糧食產(chǎn)量預(yù)測方法研究
[Abstract]:Since ancient times, the food problem has been an important issue related to the development of human society. China is a developing country with a large population and a small land. economic development not only brings wealth to the people's life, but also puts pressure on the food supply of our country. The problem of grain supply and demand is closely related to the problem of food security. The problem of food security is not only an economic problem, but also related to the long-term development of the country. Therefore, it is necessary to effectively predict the grain output of our country, so as to reasonably solve the problem of the balance of grain supply and demand. Ensure national food security. After deeply understanding the present situation of grain in China, this paper focuses on the prediction of grain output. First of all, the ARIMA model, which is commonly used in time series analysis, is improved, and the improved model and the traditional model are used to predict the yield data in different time intervals respectively. the results show that when the longer time interval is selected, When the improved model is used for prediction, the more accurate the prediction results are. Secondly, a joint dynamic prediction model is proposed. The main influencing factors of grain yield are analyzed, and then the model is constructed according to the correlation degree selection of the main factors and the yield data, and the selected influencing factors are dynamically predicted by the improved ARIMA model. Combined with multiple regression, the medium and long term dynamic prediction of grain yield is realized. Finally, considering the nonlinear characteristics of yield data and the optimization of model parameters, this paper combines the relevant contents of statistical learning theory. The application principle of least squares support vector machine and the global optimization characteristics of particle swarm optimization algorithm are analyzed and learned, and the least square support vector machine model based on particle swarm optimization is proposed. The effective combination of the two makes the prediction model not only solve faster, but also ensure the global optimization of parameter selection, and the smoothing processing is added in the data preprocessing stage, which has higher prediction accuracy than the unsmoothed processing. The experimental results show that the improved ARIMA model and the joint dynamic prediction model can effectively realize the short-term and medium-and long-term prediction of grain yield, and the prediction accuracy of the latter is higher than that of the former and the traditional grey model. The least square support vector machine model based on particle swarm optimization solves the nonlinear problem well, and the prediction accuracy is better when predicting grain yield in the short term.
【學(xué)位授予單位】:河南工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F326.11;O211.61
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊鐵軍;楊娜;朱春華;張元;;一種新的基于ARIMA模型的糧食產(chǎn)量預(yù)測[J];河南工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2015年05期
2 國家統(tǒng)計局重慶調(diào)查總隊(duì)課題組;童澤圣;;我國糧食供求及“十三五”時期趨勢預(yù)測[J];調(diào)研世界;2015年03期
3 龔珍;卜小波;吳浩;;基于PSO-SVM的混凝土抗壓強(qiáng)度預(yù)測模型[J];混凝土;2013年12期
4 徐蓓蓓;章正國;鄭新龍;何旭濤;敬強(qiáng);;最小二乘支持向量機(jī)在短期風(fēng)速預(yù)測中的應(yīng)用概況[J];電氣技術(shù);2013年06期
5 周永生;肖玉歡;黃潤生;;基于多元線性回歸的廣西糧食產(chǎn)量預(yù)測[J];南方農(nóng)業(yè)學(xué)報;2011年09期
6 孫東升;梁仕瑩;;我國糧食產(chǎn)量預(yù)測的時間序列模型與應(yīng)用研究[J];農(nóng)業(yè)技術(shù)經(jīng)濟(jì);2010年03期
7 向昌盛;周子英;武麗娜;;糧食產(chǎn)量預(yù)測的支持向量機(jī)模型研究[J];湖南農(nóng)業(yè)大學(xué)學(xué)報(社會科學(xué)版);2010年01期
8 郭智勇;彭亞拉;李蕊舟;楊勇;夏振芳;;我國糧食產(chǎn)量影響因素灰色關(guān)聯(lián)度比較研究[J];安徽農(nóng)業(yè)科學(xué);2010年05期
9 姚作芳;劉興土;楊飛;閆敏華;孫麗;魯新蕊;;組合預(yù)測模型在東北地區(qū)糧食產(chǎn)量預(yù)測中的應(yīng)用[J];華北農(nóng)學(xué)報;2009年S2期
10 李秋芳;康國磊;李小芳;李炳軍;;基于灰色關(guān)聯(lián)的河南省糧食生產(chǎn)影響因素分析[J];安徽農(nóng)業(yè)科學(xué);2009年13期
相關(guān)博士學(xué)位論文 前1條
1 張運(yùn)鵬;基于GARCH模型的金融市場風(fēng)險研究[D];吉林大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 于婷;基于ARIMA模型的股價的研究[D];大連海事大學(xué);2015年
2 陸金帥;氣候因子變化對我國糧食產(chǎn)量的影響及關(guān)系研究[D];南京信息工程大學(xué);2014年
3 夏麗;基于ARIMA模型及回歸分析的區(qū)域用電量預(yù)測方法研究[D];南京理工大學(xué);2013年
4 李勝利;基于灰色系統(tǒng)理論的湖南省糧食產(chǎn)量預(yù)測研究[D];長沙理工大學(xué);2012年
5 王娜;時間序列建模預(yù)報的原理與應(yīng)用[D];長春工業(yè)大學(xué);2010年
6 王步祥;基于灰色系統(tǒng)理論的我國糧食產(chǎn)量預(yù)測研究[D];江蘇大學(xué);2009年
7 趙國順;基于時間序列分析的股票價格趨勢預(yù)測研究[D];廈門大學(xué);2009年
8 苗開超;基于指數(shù)平滑模型的農(nóng)產(chǎn)品價格預(yù)測研究[D];合肥工業(yè)大學(xué);2009年
9 李濤;基于遺傳神經(jīng)網(wǎng)絡(luò)的糧食產(chǎn)量預(yù)測方法研究[D];哈爾濱工程大學(xué);2008年
10 y嚧豪,
本文編號:2474061
本文鏈接:http://sikaile.net/kejilunwen/yysx/2474061.html