天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

Biased Partitions and Judicious k-Partitions of Graphs

發(fā)布時間:2019-04-01 10:03
【摘要】:Let G =(V, E) be a graph with m edges. For reals p ∈ [0, 1] and q = 1-p, let m_p(G) be the minimum of qe(V_1) + pe(V_2) over partitions V = V_1 ∪ V_2, where e(V_i) denotes the number of edges spanned by V_i. We show that if m_p(G) = pqm-δ, then there exists a bipartition V_1, V_2 of G such that e(V_1) ≤ p~2m-δ + p(m/2)~(-1/2)+ o(√m) and e(V_2) ≤ q~2m-δ + q(m/2)~(-1/2) + o(√m) for δ = o(m~(2/3)). This is sharp for com_plete graphs up to the error term o(√m). For an integer k ≥ 2, let fk(G) denote the maximum number of edges in a k-partite subgraph of G. We prove that if fk(G) =(1-1/k)m + α,then G admits a k-partition such that each vertex class spans at most m/k~2-Ω(m/k~(7.5)) edges forα = Ω(m/k~6). Both of the above im_prove the results of Bollob′as and Scott.
[Abstract]:Let G = (V, E) be a graph with m edges. For reals p 鈭,

本文編號:2451469

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2451469.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f804f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com