具有奇性的奇攝動(dòng)問(wèn)題的漸近分析
[Abstract]:In this paper, we mainly study the asymptotic analysis of some singularly perturbed initial-boundary value problems, which are divided into two parts. In the first part, the numerical integration method is used to solve the singularly perturbed two-point boundary value problem, and in the second part, the asymptotic analysis of the solution of the singularly perturbed differential equation with higher order degenerate roots is studied. The first chapter introduces the research background of this paper and the research status at home and abroad, briefly summarizes the singular perturbation problem and the development of singular perturbation theory and methods, and gives a brief introduction to the purpose of this paper. The second chapter gives a brief overview of the basic knowledge to be used in this paper. In the third chapter, the numerical integration method is introduced to solve singularly perturbed second-order two-point boundary value problems, and an example is given to verify the effectiveness of this method. In chapters 4 to 6, the asymptotic analysis of solutions of singularly perturbed differential equations with degenerate roots of higher order is studied. The modified boundary layer function method is used to obtain the boundary layer characterization with multi-region phenomenon, and then the formal asymptotic solution of the problem is obtained. Finally, the upper and lower solutions of the problem are constructed by using the formal asymptotic solution, and the uniform validity of the formal asymptotic solution is proved.
【學(xué)位授予單位】:安徽工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O241.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 張蕊蕊;陳松林;;數(shù)值處理奇性奇攝動(dòng)邊值問(wèn)題[J];阜陽(yáng)師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2017年01期
2 蔣小惠;陳松林;;廣義Logistic模型奇攝動(dòng)問(wèn)題的漸近分析[J];生物數(shù)學(xué)學(xué)報(bào);2016年03期
3 孫龍;陳松林;;一類(lèi)具有慢變特性的Logistic模型解的合成展開(kāi)[J];安徽工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年01期
4 韓建邦;余贊平;周哲彥;;奇攝動(dòng)三階擬線性微分方程的無(wú)窮邊值問(wèn)題[J];福建師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
5 杜冬青;劉樹(shù)德;;具有高階轉(zhuǎn)向點(diǎn)的奇攝動(dòng)邊值問(wèn)題的尖層解[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯;2012年01期
6 倪明康;丁海云;;具有代數(shù)衰減的邊界層問(wèn)題[J];數(shù)學(xué)雜志;2011年03期
7 孫建山;劉樹(shù)德;;一類(lèi)奇攝動(dòng)擬線性邊值問(wèn)題的激波層現(xiàn)象[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯;2010年04期
8 倪明康;林武忠;;邊界層函數(shù)法在微分不等式中的應(yīng)用[J];華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年03期
,本文編號(hào):2444933
本文鏈接:http://sikaile.net/kejilunwen/yysx/2444933.html