生物模型的穩(wěn)定性態(tài)研究
[Abstract]:Bio-mathematics is a relatively independent and relatively complete subject, which plays a great role in the development of modern science and technology. It is mainly life science, public health, medicine, biology and agronomy and other disciplines and mathematics to form a cross-discipline. In studying the complexity of ecological relationship in nature, people often study it by establishing mathematical model, which is a cross-discipline of mathematics and biology-bio-mathematics. As an important branch of bio-mathematics, bio-dynamic system mainly uses the knowledge of dynamics to study the established bio-mathematics modeling. The mathematical results can be used to explain the existing phenomena in the biological world and predict what may happen in the biological world in the future. In this way, people can choose a more appropriate way of life, so that man and nature can live in greater harmony. In the first part of this paper, the research background and research status of biodynamics and population dynamics are studied. In order to facilitate our research, some basic terms and theorems of dynamical systems are introduced. The second part of this paper mainly introduces several classical population dynamics models: Logistic model, Lotka-Volterra model and Leslie-Gower model. Finally, the dynamic behavior of three kinds of functional response functions with density or non-density constraints is introduced, and the stability at the equilibrium point and the conditions for the occurrence of limit cycles are also introduced. In the third part of this paper, we mainly study the qualitative analysis of a class of Volterra models with constant retention rate. This kind of Volterra model with constant storage rate has at least two equilibrium points. By using qualitative theory of plane system and normal form theory, it is found that they can be stable nodes, unstable nodes and saddle points under different parameters. Weak center, etc. By using the normal form theory of Hopf bifurcation and the calculation of the first Lyapunov coefficient, the supercritical Hopf bifurcation is obtained near the weak center of the system, and the unique stable limit cycle is subcharged from the equilibrium point. In this paper, the dynamic analysis of the Volterra model with constant storage rate is given: when npna21) 1 (0,) 1 (010npaa), the internal equilibrium point A is the stable node of the system. If n is regarded as the rarefaction rate of the system, then for any given rarity rate n, when the prey storage rate p is large enough to make npn2) 1 (greater than the ratio of the birth rate of the prey to the death rate of the predator, This biological system can coexist for a long time; When) 133 (1) (nnpnnanp212 and) n (paak 110), the system costs a unique stable limit cycle near the equilibrium point A, which indicates that the biological system coexists in the form of stable periodic solutions for a long time.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:O175
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭士達(dá);王紹南;;怎樣制做生物模型[J];生物學(xué)通報(bào);1954年10期
2 王行;;介紹一種用草紙和粘土制作生物模型的方法[J];生物學(xué)通報(bào);1958年06期
3 沈洪法;;生物、生理模型鑒定會(huì)在南京召開(kāi)[J];生物學(xué)通報(bào);1988年01期
4 張海亮;張剛;;一類(lèi)生物模型正解的爆破集[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年03期
5 倪文林;徐本龍;;反應(yīng)-擴(kuò)散-趨向生物模型中的集中現(xiàn)象[J];上海師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期
6 魏明彬;一個(gè)三種群生物模型的定性性質(zhì)[J];四川教育學(xué)院學(xué)報(bào);1996年02期
7 張世強(qiáng);非線性生物模型回歸參數(shù)計(jì)算的一個(gè)新方法及應(yīng)用[J];重慶醫(yī)科大學(xué)學(xué)報(bào);2003年06期
8 郭昌洪;房少梅;王霞;;一類(lèi)趨化性生物模型的有限差分[J];華南農(nóng)業(yè)大學(xué)學(xué)報(bào);2009年03期
9 徐道義;具有時(shí)滯的生物模型的全局穩(wěn)定性分析[J];四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1994年05期
10 王曉雪;栗永安;;一類(lèi)帶有庇護(hù)區(qū)的單種群生物模型的動(dòng)力學(xué)分析[J];齊齊哈爾大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期
相關(guān)博士學(xué)位論文 前3條
1 王艷娥;兩類(lèi)生物模型的定性分析及數(shù)值模擬[D];陜西師范大學(xué);2011年
2 唐謙;混沌理論在生物模型中的若干應(yīng)用研究[D];大連理工大學(xué);2014年
3 朱玲;幾類(lèi)具有Logistic增長(zhǎng)的隨機(jī)生物模型性質(zhì)的研究[D];上海師范大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 劉巖巖;生物模型的穩(wěn)定性態(tài)研究[D];重慶大學(xué);2015年
2 倪文林;反應(yīng)—擴(kuò)散—趨向生物模型中的集中現(xiàn)象[D];上海師范大學(xué);2012年
3 王立杰;生物模型中的一些基本模塊及其穩(wěn)定性[D];蘇州大學(xué);2012年
4 鄭兆岳;幾類(lèi)生物模型的動(dòng)力學(xué)研究[D];安徽大學(xué);2012年
5 顏美平;高中生物模型構(gòu)建教學(xué)的策略研究[D];魯東大學(xué);2014年
6 李海燕;生物模型在課程資源開(kāi)發(fā)方面的應(yīng)用價(jià)值研究[D];東北師范大學(xué);2009年
7 路杰;幾類(lèi)脈沖生物模型的動(dòng)力學(xué)研究[D];安徽大學(xué);2012年
8 韓柱棟;兩類(lèi)生物模型解的穩(wěn)定性和周期性[D];湖南師范大學(xué);2012年
9 程麗麗;新課程高中生物模型教學(xué)的現(xiàn)狀調(diào)查和實(shí)踐研究[D];天津師范大學(xué);2013年
10 呂浩;初中生物模型教學(xué)初探[D];內(nèi)蒙古師范大學(xué);2007年
,本文編號(hào):2434464
本文鏈接:http://sikaile.net/kejilunwen/yysx/2434464.html