一類解耦的SI傳染病系統(tǒng)的行波解
發(fā)布時間:2019-03-04 15:06
【摘要】:在傳染病動力學中,行波解表示一種傳染源以常數(shù)波速在空間的傳播.本文研究一類解耦的SI系統(tǒng) 行波解的存在性.主要研究方法是改進的打靶法,利用打靶法,構(gòu)造一個Σ集,在Σ集內(nèi)找到全局正解,證明當t→-∞時,它收斂到無病平衡點;利用Liapunov函數(shù),證明系統(tǒng)全局正解當t→∞時,收斂到地方病平衡點,即行波解是存在的,再利用數(shù)值模擬去驗證所得到的結(jié)果.改進的打靶法的優(yōu)勢在于不需要構(gòu)造復雜的Wazewski′s集,且能計算最小波速.
[Abstract]:In infectious disease dynamics, traveling wave solutions represent the spatial propagation of an infectious source at a constant wave velocity. In this paper, we study the existence of traveling wave solutions for a class of decoupled SI systems. The main research method is the improved shooting method. By using the shooting method, a 危 set is constructed and the global positive solution is found in the 危 set. It is proved that when t-鈭,
本文編號:2434378
[Abstract]:In infectious disease dynamics, traveling wave solutions represent the spatial propagation of an infectious source at a constant wave velocity. In this paper, we study the existence of traveling wave solutions for a class of decoupled SI systems. The main research method is the improved shooting method. By using the shooting method, a 危 set is constructed and the global positive solution is found in the 危 set. It is proved that when t-鈭,
本文編號:2434378
本文鏈接:http://sikaile.net/kejilunwen/yysx/2434378.html
最近更新
教材專著