Bargmann空間中無(wú)界Gribov-Intissar算子的譜逼近(英文)
發(fā)布時(shí)間:2019-02-21 07:56
【摘要】:在[Adv.Math.(China),2015,44(3):335-353]中,我們研究了經(jīng)典Bargmann空間Bo中的非自伴算子H_μ:H_μ=S_μ+H_λ,其中S_μ=μz d/(dz),H_λ=iλ(z(d~2)/(dz~2)+z~2 d/(dz)),i~2=-1,參數(shù)μ,λ都是實(shí)數(shù).我們給出了H_μ的譜分析和H_μ的廣義特征向量的漸近分析.設(shè)ek(z)=(z~k)/((k!)~(1/2)),k=1,2,…是B0的正交基.算子H_μ可以被一列三對(duì)角矩陣逼近,此三對(duì)角矩陣的主對(duì)角線元素為β_k=μk,次對(duì)角線元素α_k=iλk(k+1)~(1/2),1≤k≤n,n∈N.對(duì)于μ∈C和λ∈C,本文主要研究上述矩陣的特征值z(mì)_(k,n)(μ,λ)的局部化,它是多項(xiàng)式P_(n+1)~(μ,λ)(z)的零點(diǎn),P_(n+1)~(μ,λ)(z)滿足三項(xiàng)遞推關(guān)系:若"∈R和λ∈R,則上述矩陣是復(fù)對(duì)稱的.在這種情況下,我們證明了R上有界變分復(fù)值函數(shù)∈(z)的存在性,它使得權(quán)重為∈(z)的多項(xiàng)式P_n~(μ,λ)(z)是正交的.我們也考慮了H_μ的擾動(dòng)H_λ'=S_λ'+H_λ,其中S_λ'=λ'z~2(d~2)/(dz~2)+S_μ,λ'∈R,H_λ可以被矩陣(h_(jk)~λ)_(j,k=1)~∞表示.證明了可以通過(guò)S_λ'的特征值和有限矩陣(h_(jk)~λ)_(j,k=1)~n的特征值的組合來(lái)逼近H_λ'的特征值.
[Abstract]:In [Adv.Math. (China), 2015 44 (3): 335-353], we study the nonadjoint operator H _ 渭: h _ 渭 = S _ 渭 H _ 位 in classical Bargmann space Bo, where S _ 渭 = 渭 z / (dz), H位 = I 位 (z (dn2) / (dz~2) zn2 d / (dz), ix2c-1, the parameters 渭 and 位 are real numbers. We give the spectral analysis of H _ 渭 and the asymptotic analysis of generalized eigenvector of H _ 渭. Let ek (z) = (znk) / (k!) ~ (1 / 2), KG) 2,. Is the orthonormal basis of B0. The operator H _ 渭 can be approximated by a series of tridiagonal matrices, the principal diagonal elements of the tridiagonal matrices are 尾 _ k = 渭 k, the subdiagonal elements 偽 _ KG _ k 位 k (k _ 1) ~ (1 / 2), 1 鈮,
本文編號(hào):2427356
[Abstract]:In [Adv.Math. (China), 2015 44 (3): 335-353], we study the nonadjoint operator H _ 渭: h _ 渭 = S _ 渭 H _ 位 in classical Bargmann space Bo, where S _ 渭 = 渭 z / (dz), H位 = I 位 (z (dn2) / (dz~2) zn2 d / (dz), ix2c-1, the parameters 渭 and 位 are real numbers. We give the spectral analysis of H _ 渭 and the asymptotic analysis of generalized eigenvector of H _ 渭. Let ek (z) = (znk) / (k!) ~ (1 / 2), KG) 2,. Is the orthonormal basis of B0. The operator H _ 渭 can be approximated by a series of tridiagonal matrices, the principal diagonal elements of the tridiagonal matrices are 尾 _ k = 渭 k, the subdiagonal elements 偽 _ KG _ k 位 k (k _ 1) ~ (1 / 2), 1 鈮,
本文編號(hào):2427356
本文鏈接:http://sikaile.net/kejilunwen/yysx/2427356.html
最近更新
教材專著