計數(shù)數(shù)據(jù)的廣義部分線性可加模型的漸近性質(zhì)
[Abstract]:With the rapid development of science and technology, the modern society has entered the era of big data, we are also surrounded by a variety of large quantities of high-dimensional data, especially in biology, medicine, finance and other fields. The interference factors of these observed results are also more nonlinear. Therefore, the analysis and processing of high-dimensional data becomes more and more complex. The generalized partial linear additive model (Generalized additive partial linear models,GAPLM) takes into account the nonlinear factors that affect the results on the basis of the general generalized linear model (Generalized linear models,GLM). The nonlinear additivity is added. GAPLM not only inherits the excellent characteristics that GLM can deal with different data types simultaneously, such as continuous and discrete, but also takes into account the nonlinear disturbance factors. Therefore, the estimation and prediction accuracy of the model can be greatly improved, which has a certain application guidance significance. In this paper, the generalized partially linear additive model of counting data is studied, which is a generalization of GLM combined with nonparametric estimation for the GAPLM, whose response variable satisfies the Poisson distribution. Both linear and nonlinear parts are included in the model. The covariable dimension of the linear part tends to infinity with the sample size approaching infinity, while the nonparametric function part is fitted by linear combination approximation of polynomial spline basis. It can be transformed into a linear model to solve the dimension disaster. In this paper, we prove the asymptotic existence, consistency and asymptotic normality of the root of the estimation equation of the generalized partial linear additive model with high dimensional longitudinal counting data under weaker conditions. The corresponding results in the literature are improved.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O212
【參考文獻】
相關(guān)期刊論文 前10條
1 尹長明;蘇連菊;蒙建國;;高維縱向計數(shù)數(shù)據(jù)的懲罰廣義估計方程分析[J];重慶理工大學(xué)學(xué)報(自然科學(xué));2016年06期
2 張秋瑾;;廣義線性模型中變量選擇的相合性[J];華中師范大學(xué)學(xué)報(自然科學(xué)版);2016年01期
3 朱春華;高啟兵;;自然聯(lián)系函數(shù)下自適應(yīng)設(shè)計廣義線性模型的漸近性質(zhì)(英文)[J];數(shù)學(xué)進展;2013年01期
4 尹長明;陳莉莉;顏然;;廣義估計方程根的強相合性[J];廣西師范學(xué)院學(xué)報(自然科學(xué)版);2012年04期
5 倪艷風(fēng);朱仲義;;縱向數(shù)據(jù)廣義部分線性模型的懲罰GMM估計[J];應(yīng)用概率統(tǒng)計;2012年03期
6 趙目;陳柏成;周勇;;縱向數(shù)據(jù)下廣義估計方程估計[J];數(shù)學(xué)學(xué)報;2012年01期
7 尹長明;李永明;王朋炎;;廣義線性模型中極大擬似然估計的強收斂速度[J];數(shù)學(xué)物理學(xué)報;2009年04期
8 張三國;廖源;;關(guān)于廣義線性模型擬似然估計弱相合性的幾個問題[J];中國科學(xué)(A輯:數(shù)學(xué));2007年11期
9 尹長明;趙林城;;廣義線性模型中檢驗回歸參數(shù)統(tǒng)計量的漸近分布[J];系統(tǒng)科學(xué)與數(shù)學(xué);2007年01期
10 尹長明,趙林城;廣義線性模型極大似然估計的強相合性與漸近正態(tài)性[J];應(yīng)用概率統(tǒng)計;2005年03期
相關(guān)博士學(xué)位論文 前1條
1 胡宏昌;半?yún)?shù)模型的估計方法及其應(yīng)用[D];武漢大學(xué);2004年
相關(guān)碩士學(xué)位論文 前1條
1 陸安;廣義線性模型中極大擬似然估計的相合性與漸近正態(tài)性[D];安徽大學(xué);2011年
,本文編號:2421915
本文鏈接:http://sikaile.net/kejilunwen/yysx/2421915.html