關(guān)于Kleshchev多重剖分的刻畫(huà)
發(fā)布時(shí)間:2019-02-12 09:32
【摘要】:本文首先回顧了Hecke代數(shù)表示及組合理論的相關(guān)知識(shí),引入了Kleshchev多重剖分、(Q,e)-限制多重剖分、ladder多重剖分以及強(qiáng)ladder多重剖分的定義.廣義Dippper-James-Murphy猜想斷言前兩個(gè)組合概念完全一致.在這篇論文中,我們證明了當(dāng)e=2且v1≤v2≤…≤vr時(shí)廣義DJM猜想成立.我們的主要結(jié)果是當(dāng)e=2且v1≤v2≤…≤vr時(shí),若λ∈Pr(n),則λ∈Kr(n)當(dāng)且僅當(dāng)λ是(Q,e)-限制的,也當(dāng)且僅當(dāng)λ是ladder多重剖分,也當(dāng)且僅當(dāng)λ是強(qiáng)adder多重剖分.
[Abstract]:In this paper, we first review the knowledge of Hecke algebraic representation and combinatorial theory, and introduce the definitions of Kleshchev multiple subdivision, (QUE) -restricted multiple subdivision, ladder multiple subdivision and strong ladder multiple subdivision. Generalized Dippper-James-Murphy conjecture asserts that the first two combinatorial concepts are identical. In this paper, we prove that when eg 2 and v 1 鈮,
本文編號(hào):2420310
[Abstract]:In this paper, we first review the knowledge of Hecke algebraic representation and combinatorial theory, and introduce the definitions of Kleshchev multiple subdivision, (QUE) -restricted multiple subdivision, ladder multiple subdivision and strong ladder multiple subdivision. Generalized Dippper-James-Murphy conjecture asserts that the first two combinatorial concepts are identical. In this paper, we prove that when eg 2 and v 1 鈮,
本文編號(hào):2420310
本文鏈接:http://sikaile.net/kejilunwen/yysx/2420310.html
最近更新
教材專(zhuān)著