相依隨機(jī)序列滑動平均的強(qiáng)偏差定理的研究
[Abstract]:In the late 1970s, Professor Liu Wen and his collaborators extended the strong limit theorem of probability theory to the case of inequality, established the strong deviation theorem of random sequence, and obtained abundant research results. In this paper, based on the previous studies, we consider the strong deviation theorems for a class of dependent random sequences with respect to the moving average of different reference product distributions in the case of different reference product distributions. The basic idea of the study is to introduce the sliding likelihood ratio and sliding relative entropy as a random measure of the deviation between the joint distribution and the reference product distribution of dependent random sequences. By limiting the range of sliding relative entropy, a subset of the sample space is given, and the upper and lower bounds of the moving average of random sequences, that is, the strong deviation theorem, are obtained. The main point of the proof is to construct a sliding likelihood ratio with parameters. By using the classical Borel-Cantelli Lemma and the analysis method, we obtain almost everywhere convergence inequalities. The full text is divided into six chapters: the first chapter is the introduction part, which introduces the background of this paper and the basic ideas and methods of studying the strong deviation theorem of dependent random sequence; The second chapter briefly introduces the relevant basic theorems and concepts, as well as the research results related to this paper; In chapter 3, the concepts of sliding likelihood ratio and sliding relative entropy are introduced to study some strong deviation theorems for sliding average of random controlled random sequences. In chapter 4, we continue to study the strong deviation theorems of continuous sources relative to memoryless Gamma sources, and in chapter 5, we study a class of strong deviation theorems for the moving mean of random sequences with arbitrary dependent sequences and countable doubly nonhomogeneous Markov universal culverts. Chapter six summarizes and prospects the full text.
【學(xué)位授予單位】:安徽工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O211.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 金少華;趙旋;宛艷萍;閆會強(qiáng);;非齊次樹上馬氏鏈場滑動平均的若干強(qiáng)偏差定理[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2015年16期
2 吳玉;范愛華;;關(guān)于可列非齊次馬氏鏈的若干極限定理[J];純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué);2015年02期
3 吳玉;崔影;范愛華;;關(guān)于可列非齊次馬氏鏈泛函滑動平均的一類強(qiáng)極限定理[J];安徽工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2015年01期
4 董云;丁芳清;胡萍;;相依隨機(jī)序列加權(quán)和滑動平均的若干小偏差定理[J];大學(xué)數(shù)學(xué);2014年03期
5 簡旭;吳玉;范愛華;;關(guān)于獨(dú)立同分布隨機(jī)序列的若干極限定理[J];安徽工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2014年02期
6 金少華;王東;王永生;黃潔;;關(guān)于樹上連續(xù)狀態(tài)馬氏泛函的一類強(qiáng)偏差定理[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2014年01期
7 汪忠志;楊衛(wèi)國;;關(guān)于隨機(jī)序列滑動平均的若干強(qiáng)偏差定理[J];工程數(shù)學(xué)學(xué)報;2011年05期
8 汪忠志;楊衛(wèi)國;;關(guān)于相依離散隨機(jī)序列的若干強(qiáng)偏差定理[J];系統(tǒng)科學(xué)與數(shù)學(xué);2011年08期
9 王康康;李芳;楊衛(wèi)國;;任意隨機(jī)序列關(guān)于二重非齊次馬氏鏈的隨機(jī)和的一類隨機(jī)選擇系統(tǒng)的隨機(jī)逼近定理[J];應(yīng)用概率統(tǒng)計;2009年06期
10 方舒;;關(guān)于二重馬氏鏈的相關(guān)性質(zhì)[J];安慶師范學(xué)院學(xué)報(自然科學(xué)版);2008年03期
相關(guān)碩士學(xué)位論文 前1條
1 宋月升;混合相依隨機(jī)變量序列的強(qiáng)極限定理[D];江蘇大學(xué);2009年
,本文編號:2419157
本文鏈接:http://sikaile.net/kejilunwen/yysx/2419157.html