偏微分方程保結(jié)構(gòu)算法構(gòu)造及分析
[Abstract]:With the rapid development of science, more and more physical, chemical and biological processes can be described by nonlinear evolution equations or electromagnetic field equations. In many cases, these systems are conservative, so how to design efficient and conservative algorithms for these systems has been a hot topic in computational science. This dissertation is devoted to the study and numerical analysis of locally conserved algorithms for nonlinear evolution equations (multi-symplectic algorithm, local energy, momentum conservation algorithm) and three-dimensional Maxwell equation efficient structure-conserving algorithm. The main research results are as follows: 1) in dealing with partial differential equations, the symplectic algorithm and the traditional conserved structure algorithms such as global conserving energy and momentum must consider not only whether the equation is a conservative system, but also whether the boundary conditions are appropriate. These algorithms can only be used under proper boundary conditions. In order to increase the applicability of structure-preserving algorithm, we construct a series of local structure-preserving algorithms for coupled nonlinear Schrodinger system, Boussinesq system and Klein-Gordon-Schrodinger system, including multi-symplectic algorithm, local energy, and local energy. Momentum conservation algorithm. These locally structure-preserving algorithms can maintain discrete local conservation laws in the space domain at any time. When the boundary conditions are appropriate, these local structure preserving algorithms are naturally global preserving algorithms, otherwise they are not. In addition, we also analyze the nonlinear stability and convergence of some locally conserved algorithms. Numerical experiments show that the locally conserved structure algorithm can not only obtain a good numerical solution, but also preserve the local conservation law and global conservation law of the system. The advantages of the proposed algorithm are demonstrated by comparing with the existing numerical algorithms in the literature. 2) the three-dimensional Maxwell equation has a double Hamiltonian structure. The Hamiltonian function and Hamiltonian operator are discretized by spectral method, and then the finite dimensional Hamiltonian system is quadrature by the mean vector field method. Thus, we obtain two schemes for solving three dimensional Maxwell equations (AVF (2) and AVF (4). AVF (2) and AVF (4) automatically hold the two Hamiltonian systems. We prove that AVF (2) and AVF (4) maintain discrete energy, momentum and divergence. Numerical dispersion analysis shows that they are unconditionally stable and nondissipative. The strict error analysis shows that AVF (2) and AVF (4) have the second order and fourth order convergence respectively in the time direction and the spectral accuracy in the space direction. The results of theoretical analysis are well confirmed by numerical experiments. 3) AVF (2) and AVF (4) are obtained by direct discrete Maxwell equations. In order to design a more efficient energy preserving algorithm, we obtain time second order and fourth order splitting methods for approximating Maxwell equations by using the techniques of exponential operator splitting and combination, respectively. Each subproblem of these splitting models is a Hamiltonian system and has the same Hamiltonian function as the original problem. For each subproblem, the Hamiltonian function and Hamiltonian operator are discretized by spectral method, and then the finite dimensional Hamiltonian system is obtained by means of the average vector field method. The second and fourth order splitting schemes are obtained (S-AVF (2) and S-AVF (4). We prove that S-AVF (2) and S-AVF (4) can maintain four discrete energies at the same time and are unconditionally stable. In addition, using discrete Fourier transform, we can write the obtained scheme into explicit form. By means of energy analysis, we obtain the error estimates of S-AVF (2) and S-AVF (4). The results of theoretical analysis are confirmed by numerical experiments.
【學(xué)位授予單位】:南京師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:O175.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 斯仁道爾吉;;一個(gè)非線性發(fā)展方程的相似約化[J];內(nèi)蒙古師范大學(xué)學(xué)報(bào)(自然科學(xué)漢文版);2010年05期
2 陸啟韶 ,蔣正新;一類非線性發(fā)展方程的分叉問(wèn)題[J];北京航空學(xué)院學(xué)報(bào);1985年02期
3 趙家兵;;擬非線性發(fā)展方程的B解[J];應(yīng)用數(shù)學(xué);1993年04期
4 譚紹濱,,韓永前;一般非線性發(fā)展方程解的長(zhǎng)時(shí)間行為[J];數(shù)學(xué)年刊A輯(中文版);1995年02期
5 荔煒;一類非線性發(fā)展方程解的存在性[J];寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版);1996年01期
6 蔣志民;一類非線性發(fā)展方程的幾何對(duì)稱[J];黃淮學(xué)刊(自然科學(xué)版);1996年S2期
7 羅黨;一類非線性發(fā)展方程的整體解[J];天中學(xué)刊;2000年02期
8 江成順,孫同軍,崔國(guó)忠;一非線性發(fā)展方程的反問(wèn)題(英文)[J];數(shù)學(xué)研究與評(píng)論;2001年01期
9 呂蓬,吳耀紅,彭武安,張輝;一類非線性發(fā)展方程的計(jì)算穩(wěn)定性[J];現(xiàn)代電力;2001年04期
10 謝福鼎,閆振亞,張鴻慶;源于Fermi-Pasta-Ulam問(wèn)題的非線性發(fā)展方程的相似約化[J];應(yīng)用數(shù)學(xué)和力學(xué);2002年04期
相關(guān)會(huì)議論文 前2條
1 史小衛(wèi);梁昌洪;;非線性弧立子理論[A];1989年全國(guó)微波會(huì)議論文集(上)[C];1989年
2 朝魯;;求解非線性發(fā)展方程精確解的一個(gè)新方法[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)交叉研究進(jìn)展——2010(13)卷[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 張利;幾類非線性發(fā)展方程解的研究[D];清華大學(xué);2014年
2 李仕明;某些非線性發(fā)展方程的適定性與漸近性態(tài)[D];華南理工大學(xué);2015年
3 蔡加祥;偏微分方程保結(jié)構(gòu)算法構(gòu)造及分析[D];南京師范大學(xué);2015年
4 宋海濤;兩類非線性發(fā)展方程的動(dòng)力學(xué)行為研究[D];蘭州大學(xué);2008年
5 江杰;非線性發(fā)展方程組的整體解及漸近性態(tài)[D];復(fù)旦大學(xué);2009年
6 吳昊;非線性發(fā)展方程及方程組整體解的漸近性態(tài)[D];復(fù)旦大學(xué);2007年
7 尚嬋妤;非線性發(fā)展方程(組)整體解及其漸近性態(tài)[D];復(fù)旦大學(xué);2009年
8 郝江浩;若干非線性發(fā)展方程解的性質(zhì)的研究[D];山西大學(xué);2006年
9 任玉杰;非線性發(fā)展方程求解法的研究與數(shù)學(xué)機(jī)械化實(shí)現(xiàn)[D];大連理工大學(xué);2007年
10 康靜;非線性發(fā)展方程的勢(shì)對(duì)稱及線性化[D];西北大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 賈婷婷;基于符號(hào)計(jì)算的非線性發(fā)展方程的精確解和孤子運(yùn)動(dòng)的研究[D];太原理工大學(xué);2016年
2 喬麗靜;兩類非線性發(fā)展方程的顯式精確行波解[D];桂林電子科技大學(xué);2016年
3 李琦;求解幾種非線性發(fā)展方程的兩類保結(jié)構(gòu)方法[D];蘭州大學(xué);2016年
4 李拔萃;非線性發(fā)展方程求解中的幾種構(gòu)造方法[D];遼寧師范大學(xué);2008年
5 曾嶸;關(guān)于三個(gè)非線性發(fā)展方程解的爆破和衰減性[D];重慶大學(xué);2009年
6 張歡;基于雙線性方法的非線性發(fā)展方程的求解[D];北京郵電大學(xué);2009年
7 耿濤;若干非線性發(fā)展方程的求解研究[D];北京郵電大學(xué);2009年
8 劉若辰;1+2-維非線性發(fā)展方程的一維最優(yōu)系統(tǒng)及其對(duì)稱約化[D];西北大學(xué);2001年
9 胡偉;一類混合類型耗散非線性發(fā)展方程解的局部存在性[D];華中師范大學(xué);2008年
10 包福祥;一些非線性發(fā)展方程的研究[D];內(nèi)蒙古師范大學(xué);2008年
本文編號(hào):2410040
本文鏈接:http://sikaile.net/kejilunwen/yysx/2410040.html