天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

二次特征值反問(wèn)題的數(shù)值解法及其應(yīng)用

發(fā)布時(shí)間:2019-01-12 12:39
【摘要】:代數(shù)特征值反問(wèn)題的理論與方法是研究結(jié)構(gòu)動(dòng)力模型修正問(wèn)題的主要方法之一。目前,如何同時(shí)保持結(jié)構(gòu)矩陣的半正定性與稀疏性是結(jié)構(gòu)動(dòng)力模型修正問(wèn)題中的一個(gè)重要研究課題。本文主要運(yùn)用交替方向法與鄰近點(diǎn)方法,研究了二次特征值反問(wèn)題,并討論了這些方法在阻尼振動(dòng)系統(tǒng)、無(wú)阻尼陀螺結(jié)構(gòu)系統(tǒng)的有限元模型修正中的應(yīng)用,為代數(shù)特征值反問(wèn)題以及有限元?jiǎng)恿δP托拚龁?wèn)題提供數(shù)學(xué)理論和有效的數(shù)值方法。本文主要包括如下內(nèi)容:當(dāng)質(zhì)量矩陣為對(duì)角矩陣且足夠精確或固定時(shí),基于不完備特征數(shù)據(jù),考慮了首一二次特征值反問(wèn)題(MQIEP),要求修正的剛度矩陣、阻尼矩陣的對(duì)稱性、半正定性和稀疏性與初始系統(tǒng)保持一致。首先,利用約束條件的特殊結(jié)構(gòu),討論了MQIEP有解的條件。然后,將鄰近點(diǎn)方法與交替方向法結(jié)合,提出了一種求解MQIEP的乘子交替方向法,并給出該方法的收斂性分析。最后,將乘子交替方向法應(yīng)用于帶阻尼振動(dòng)系統(tǒng)的有限元模型修正問(wèn)題,實(shí)驗(yàn)結(jié)果表明該方法是可行的;诓煌陚涮卣鲾(shù)據(jù),考慮了結(jié)構(gòu)化二次特征值反問(wèn)題(SQIEP),要求修正的質(zhì)量矩陣、阻尼矩陣與剛度矩陣的對(duì)稱性、半正定性和稀疏性與初始系統(tǒng)保持一致。首先,討論了SQIEP有解的條件。然后,利用拉格朗日函數(shù),給出SQIEP的單調(diào)變分不等式形式,提出了求解該不等式問(wèn)題的定制鄰近點(diǎn)算法,并給出該算法的收斂性分析。最后,將該算法應(yīng)用于阻尼振動(dòng)系統(tǒng)的有限元模型修正問(wèn)題,實(shí)驗(yàn)結(jié)果表明該方法是可行的。基于不完備特征數(shù)據(jù),考慮了無(wú)阻尼陀螺結(jié)構(gòu)系統(tǒng)的結(jié)構(gòu)化二次特征值反問(wèn)題(GQIEP),要求修正的質(zhì)量矩陣、陀螺矩陣與剛度矩陣的對(duì)稱性、反對(duì)稱性、半正定性以及稀疏性與初始系統(tǒng)保持一致。首先,討論了GQIEP有解的條件。然后利用約束條件的特殊結(jié)構(gòu),給出了求解GQIEP的定制鄰近點(diǎn)算法,并給出該算法的收斂性分析。實(shí)驗(yàn)結(jié)果表明該算法是可行的。
[Abstract]:The theory and method of algebraic inverse eigenvalue problem is one of the main methods to study the problem of structural dynamic model modification. At present, how to maintain the positive semidefinite and sparsity of structural matrix simultaneously is an important research topic in the problem of structural dynamic model modification. In this paper, the inverse problem of quadratic eigenvalue is studied by means of alternating direction method and adjacent point method, and the application of these methods in the finite element model modification of damping vibration system and undamped gyroscope structure system is discussed. It provides mathematical theory and effective numerical method for algebraic inverse eigenvalue problem and finite element dynamic model modification problem. The main contents of this paper are as follows: when the mass matrix is diagonal matrix and sufficiently accurate or fixed, based on incomplete characteristic data, the stiffness matrix and the symmetry of damping matrix, which are required by the inverse problem of first-order eigenvalue (MQIEP), are considered. The semi-positive definiteness and sparsity are consistent with the initial system. Firstly, by using the special structure of constraint conditions, we discuss the conditions under which MQIEP has solutions. Then, by combining the adjacent point method with the alternating direction method, a multiplier alternating direction method for solving MQIEP is proposed, and the convergence analysis of the method is given. Finally, the multiplier alternating direction method is applied to the finite element model modification problem of damped vibration system. The experimental results show that the method is feasible. Based on incomplete characteristic data, the modified mass matrix required by (SQIEP), for the inverse problem of structured quadratic eigenvalue is considered. The symmetry, semi-positive definiteness and sparsity of damping matrix and stiffness matrix are consistent with the initial system. First, we discuss the conditions under which SQIEP has solutions. Then, using Lagrangian function, we give the form of SQIEP's monotone variational inequality, propose a custom adjacent point algorithm for solving the inequality problem, and give the convergence analysis of the algorithm. Finally, the algorithm is applied to the finite element model modification problem of damped vibration system. The experimental results show that the method is feasible. Based on incomplete characteristic data, the inverse problem of structured quadratic eigenvalue of undamped gyroscope system is considered. The mass matrix, symmetry and antisymmetry of gyroscope matrix and stiffness matrix, which are required by (GQIEP), are modified. The positive semidefinite and sparsity are consistent with the initial system. First, we discuss the conditions under which GQIEP has solutions. Then, by using the special structure of the constraint conditions, a custom neighborhood algorithm for solving GQIEP is presented, and the convergence analysis of the algorithm is given. Experimental results show that the algorithm is feasible.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:O241.6

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 趙丹;陶鳳梅;;非齊次特征值的包含域及其推廣[J];鞍山師范學(xué)院學(xué)報(bào);2007年06期

2 李志敏,,孫志和;非齊次特征值轉(zhuǎn)化為求解二次特征值的方法[J];青島建筑工程學(xué)院學(xué)報(bào);1996年01期

3 劉小明;郭華;;次特征值的界[J];重慶工商大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年04期

4 逄勃;;非齊次特征值的k-型包含域及應(yīng)用[J];南京大學(xué)學(xué)報(bào)數(shù)學(xué)半年刊;2007年01期

5 于妍;惠淑榮;;帶結(jié)構(gòu)的二次特征值反問(wèn)題的求解方法[J];沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào);2009年03期

6 趙丹;;非齊次特征值的包含域及其推廣[J];鞍山師范學(xué)院學(xué)報(bào);2010年06期

7 任力偉;非齊次特征值問(wèn)題解存在性研究[J];科學(xué)通報(bào);1991年06期

8 李志敏;非齊次特征值問(wèn)題數(shù)值方法[J];青島建筑工程學(xué)院學(xué)報(bào);1994年03期

9 劉小明;郭華;;實(shí)方陣的次特征值[J];重慶工商大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年05期

10 呂洪斌;張伸煦;安百瓊;;矩陣非齊次特征值的包含域[J];東北師大學(xué)報(bào)(自然科學(xué)版);2008年01期

相關(guān)博士學(xué)位論文 前1條

1 趙康;二次特征值反問(wèn)題的數(shù)值解法及其應(yīng)用[D];湖南大學(xué);2015年

相關(guān)碩士學(xué)位論文 前6條

1 房琳穎;非齊次特征值問(wèn)題的研究[D];北華大學(xué);2007年

2 吳敏麗;二次特征值逆問(wèn)題的模型修正方法[D];廈門(mén)大學(xué);2007年

3 王金偉;魯棒部分二次特征值配置問(wèn)題的數(shù)值方法[D];廈門(mén)大學(xué);2009年

4 欒天;分塊矩陣特征值包含域和非齊次特征值包含域[D];北華大學(xué);2007年

5 鐘關(guān)村;二階RLC電路設(shè)計(jì)中的結(jié)構(gòu)化二次特征值反問(wèn)題[D];大連理工大學(xué);2009年

6 郁金祥;最大公因式求解算法和矩陣的逆次特征值問(wèn)題研究[D];浙江大學(xué);2005年



本文編號(hào):2407785

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2407785.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ad699***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com