二次特征值反問(wèn)題的數(shù)值解法及其應(yīng)用
[Abstract]:The theory and method of algebraic inverse eigenvalue problem is one of the main methods to study the problem of structural dynamic model modification. At present, how to maintain the positive semidefinite and sparsity of structural matrix simultaneously is an important research topic in the problem of structural dynamic model modification. In this paper, the inverse problem of quadratic eigenvalue is studied by means of alternating direction method and adjacent point method, and the application of these methods in the finite element model modification of damping vibration system and undamped gyroscope structure system is discussed. It provides mathematical theory and effective numerical method for algebraic inverse eigenvalue problem and finite element dynamic model modification problem. The main contents of this paper are as follows: when the mass matrix is diagonal matrix and sufficiently accurate or fixed, based on incomplete characteristic data, the stiffness matrix and the symmetry of damping matrix, which are required by the inverse problem of first-order eigenvalue (MQIEP), are considered. The semi-positive definiteness and sparsity are consistent with the initial system. Firstly, by using the special structure of constraint conditions, we discuss the conditions under which MQIEP has solutions. Then, by combining the adjacent point method with the alternating direction method, a multiplier alternating direction method for solving MQIEP is proposed, and the convergence analysis of the method is given. Finally, the multiplier alternating direction method is applied to the finite element model modification problem of damped vibration system. The experimental results show that the method is feasible. Based on incomplete characteristic data, the modified mass matrix required by (SQIEP), for the inverse problem of structured quadratic eigenvalue is considered. The symmetry, semi-positive definiteness and sparsity of damping matrix and stiffness matrix are consistent with the initial system. First, we discuss the conditions under which SQIEP has solutions. Then, using Lagrangian function, we give the form of SQIEP's monotone variational inequality, propose a custom adjacent point algorithm for solving the inequality problem, and give the convergence analysis of the algorithm. Finally, the algorithm is applied to the finite element model modification problem of damped vibration system. The experimental results show that the method is feasible. Based on incomplete characteristic data, the inverse problem of structured quadratic eigenvalue of undamped gyroscope system is considered. The mass matrix, symmetry and antisymmetry of gyroscope matrix and stiffness matrix, which are required by (GQIEP), are modified. The positive semidefinite and sparsity are consistent with the initial system. First, we discuss the conditions under which GQIEP has solutions. Then, by using the special structure of the constraint conditions, a custom neighborhood algorithm for solving GQIEP is presented, and the convergence analysis of the algorithm is given. Experimental results show that the algorithm is feasible.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:O241.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙丹;陶鳳梅;;非齊次特征值的包含域及其推廣[J];鞍山師范學(xué)院學(xué)報(bào);2007年06期
2 李志敏,,孫志和;非齊次特征值轉(zhuǎn)化為求解二次特征值的方法[J];青島建筑工程學(xué)院學(xué)報(bào);1996年01期
3 劉小明;郭華;;次特征值的界[J];重慶工商大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年04期
4 逄勃;;非齊次特征值的k-型包含域及應(yīng)用[J];南京大學(xué)學(xué)報(bào)數(shù)學(xué)半年刊;2007年01期
5 于妍;惠淑榮;;帶結(jié)構(gòu)的二次特征值反問(wèn)題的求解方法[J];沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào);2009年03期
6 趙丹;;非齊次特征值的包含域及其推廣[J];鞍山師范學(xué)院學(xué)報(bào);2010年06期
7 任力偉;非齊次特征值問(wèn)題解存在性研究[J];科學(xué)通報(bào);1991年06期
8 李志敏;非齊次特征值問(wèn)題數(shù)值方法[J];青島建筑工程學(xué)院學(xué)報(bào);1994年03期
9 劉小明;郭華;;實(shí)方陣的次特征值[J];重慶工商大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年05期
10 呂洪斌;張伸煦;安百瓊;;矩陣非齊次特征值的包含域[J];東北師大學(xué)報(bào)(自然科學(xué)版);2008年01期
相關(guān)博士學(xué)位論文 前1條
1 趙康;二次特征值反問(wèn)題的數(shù)值解法及其應(yīng)用[D];湖南大學(xué);2015年
相關(guān)碩士學(xué)位論文 前6條
1 房琳穎;非齊次特征值問(wèn)題的研究[D];北華大學(xué);2007年
2 吳敏麗;二次特征值逆問(wèn)題的模型修正方法[D];廈門(mén)大學(xué);2007年
3 王金偉;魯棒部分二次特征值配置問(wèn)題的數(shù)值方法[D];廈門(mén)大學(xué);2009年
4 欒天;分塊矩陣特征值包含域和非齊次特征值包含域[D];北華大學(xué);2007年
5 鐘關(guān)村;二階RLC電路設(shè)計(jì)中的結(jié)構(gòu)化二次特征值反問(wèn)題[D];大連理工大學(xué);2009年
6 郁金祥;最大公因式求解算法和矩陣的逆次特征值問(wèn)題研究[D];浙江大學(xué);2005年
本文編號(hào):2407785
本文鏈接:http://sikaile.net/kejilunwen/yysx/2407785.html