兩類相依樣本下密度函數(shù)估計的相合性
[Abstract]:Because wide quadrant dependent (WOD) is a more common sequence of dependent random variables including extended negative dependent (END), negatively dependent (ND), negatively correlated (NA), it is widely used in risk analysis and multivariate analysis. Reliability theory and other fields. Therefore, it is very important to extend the nonparametric statistical large sample properties of independent or other dependent sequences to the WOD,END case. In this paper, we mainly discuss some large sample properties of the nearest neighbor density estimation and kernel density estimation for the unknown density function of the sample sequence of WOD,END random variables, such as strong consistency, uniform strong consistency, strong convergence rate, at the same time, The strong convergence rate of failure rate function is also discussed. The large sample properties of the corresponding density function estimators for independent and other dependent random variable sample sequences are generalized. The full text is divided into four chapters. Chapter 1: the research background and methods of unknown density function estimation are summarized. The research status of random variable sequence WOD,END at home and abroad and the main results of this paper are given. Chapter 2: Bernstein inequality and Rosenthal inequality of END random variable sample sequence. The strong consistency and r order moment consistency of the recursive kernel estimators for the density function of END random variables are obtained. Chapter 3: from the Exponential inequality of the sample sequence of WOD random variable, we obtain the uniform strong consistency, mean square consistency and strong convergence rate of the kernel estimator of the density function of the sample sequence of WOD random variable under the appropriate premise, at the same time, The strong convergence rate of the failure rate function is also discussed as an application. Chapter 4: based on the Bernstein inequality of the sample sequence of WOD random variables, the uniformly strongly consistent convergence rate of the nearest neighbor density estimation of the unknown density function of the sample sequence of WOD random variables is obtained under appropriate assumptions.
【學位授予單位】:廣西師范學院
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O212
【參考文獻】
相關(guān)期刊論文 前10條
1 胡學平;張紅梅;;WOD樣本下密度函數(shù)核估計的收斂性[J];山東大學學報(理學版);2017年04期
2 秦永松;雷慶祝;;強混合樣本下最近鄰密度估計的漸近正態(tài)性[J];數(shù)學年刊A輯(中文版);2016年04期
3 李永明;應銳;蔡際盼;姚竟;;WOD樣本密度函數(shù)和失效率函數(shù)遞歸核估計的逐點強相合性[J];吉林大學學報(理學版);2015年06期
4 劉振;吳群英;葉彩園;;WOD樣本最近鄰密度估計的相合性[J];桂林理工大學學報;2014年04期
5 Dehua QIU;Tienchung HU;;Strong Limit Theorems for Weighted Sums of Widely Orthant Dependent Random Variables[J];Journal of Mathematical Research with Applications;2014年01期
6 施生塔;吳群英;;WOD樣本下密度函數(shù)核估計的強相合性[J];浙江大學學報(理學版);2014年01期
7 蘭沖鋒;;NQD樣本最近鄰密度估計的一致強相合速度[J];阜陽師范學院學報(自然科學版);2013年04期
8 劉振;吳群英;葉彩園;;刪失樣本α混合序列遞歸核密度估計的一致強相合性及速度[J];湖北大學學報(自然科學版);2013年04期
9 陳志勇;劉婷婷;陳燭薔;王學軍;;AANA序列的強大數(shù)定律和強收斂速度[J];合肥工業(yè)大學學報(自然科學版);2012年12期
10 劉艷;吳群英;;ND樣本最近鄰密度估計的一致強相合性[J];華僑大學學報(自然科學版);2012年05期
,本文編號:2400289
本文鏈接:http://sikaile.net/kejilunwen/yysx/2400289.html