負(fù)二項(xiàng)回歸模型在過度離散車險(xiǎn)數(shù)據(jù)中的應(yīng)用
[Abstract]:Counting data often appear in the fields of medicine, sociology and psychology. It is an important type of statistical data with nonnegative integer values. Poisson regression model, negative binomial regression model, generalized Poisson regression model and Hurdle model are commonly used to analyze the counting data. A special case of counting data is that the conditional variance of the data is greater than the conditional mean value, that is, the phenomenon of over-discretization exists in the data, so the analysis of the over-discrete data becomes an important statistical problem. Auto insurance data include the number of claims, the amount claimed and the total amount of compensation, among which the number of claims belongs to the count data. The analysis of claim number data and model fitting are the basis of vehicle insurance rate determination. But the negative binomial regression model can solve the problem of excessive dispersion in the data well, so this paper mainly studies the application of the negative binomial regression model in the excessive discrete vehicle insurance data. First of all, this paper introduces the model used in this paper, the definition of excessive discretization, the causes of excessive discretization, the possible consequences and tests, etc. A case study shows that the linear regression model is not suitable for the case where the response variable is counted. Secondly, the paper discusses the advantages of Poisson regression model and negative binomial regression model to analyze the over-discrete vehicle insurance data through empirical analysis. The results show that the negative binomial regression model is more suitable for excessive discrete vehicle insurance data in terms of model fitting effect, prediction effect and actual significance of the model. Finally, the advantages of Poisson regression model, negative binomial regression model and generalized Poisson regression model are compared by numerical simulation. The results show that the fitting effect of negative binomial regression model is better than that of Poisson regression model and generalized Poisson regression model. When there is no excessive dispersion of data, there is no difference between Poisson regression model and negative binomial regression model, and both of them are superior to generalized Poisson regression model. In general, the negative binomial regression model is a good choice regardless of whether the data is over discrete or not.
【學(xué)位授予單位】:貴州民族大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:O212.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前6條
1 徐昕;袁衛(wèi);孟生旺;;負(fù)二項(xiàng)回歸模型的推廣及其在分類費(fèi)率厘定中的應(yīng)用[J];數(shù)理統(tǒng)計(jì)與管理;2010年04期
2 徐飛;;負(fù)二項(xiàng)回歸模型在過離散型索賠次數(shù)中的應(yīng)用研究[J];統(tǒng)計(jì)教育;2009年04期
3 徐昕;袁衛(wèi);孟生旺;;零膨脹負(fù)二項(xiàng)回歸模型的推廣與費(fèi)率厘定[J];系統(tǒng)工程理論與實(shí)踐;2012年01期
4 徐昕;郭念國;;兩類零膨脹負(fù)二項(xiàng)回歸模型在汽車保險(xiǎn)定價(jià)中的應(yīng)用[J];南陽師范學(xué)院學(xué)報(bào);2011年12期
5 卞雅莉;;基于負(fù)二項(xiàng)回歸模型的納米材料專利質(zhì)量分析[J];科技管理研究;2014年09期
6 ;[J];;年期
相關(guān)碩士學(xué)位論文 前3條
1 陳莉;負(fù)二項(xiàng)回歸模型在過度離散車險(xiǎn)數(shù)據(jù)中的應(yīng)用[D];貴州民族大學(xué);2016年
2 徐業(yè)峰;負(fù)二項(xiàng)回歸模型的統(tǒng)計(jì)推斷[D];揚(yáng)州大學(xué);2014年
3 張宏璐;高速公路交通事故起數(shù)預(yù)測方法研究[D];長安大學(xué);2015年
,本文編號(hào):2394394
本文鏈接:http://sikaile.net/kejilunwen/yysx/2394394.html