種群競(jìng)爭(zhēng)系統(tǒng)分形動(dòng)力學(xué)與控制
[Abstract]:The model of population growth of graduate students is of great significance to the development of human society. It has important applications in controlling population, allocating social resources, monitoring and improving ecological environment, protecting species and developing breeding industry. In recent years, the biological mathematics has been continuously developed, and the biological mathematical model has been well used. In the study of population, the most important question is whether the population has a positive equilibrium state and whether the equilibrium state can be kept stable. In mathematics, population equilibrium is about the stability of the solution of population competition model. In this paper, the Lotka-Volterra competition model, the continuous population competition model and the population competition model in the complex number domain are analyzed respectively. Among them, Lotka-Volterra population competition model laid the foundation of competition model. In this paper, the idea and method of Julia set in fractal geometry are first applied to the Lotka-Volterra population competition model, and the Julia set of the competition model is established, and the feedback control method is used to control it, and the synchronization of the competition model under different parameters is considered. Synchronizes one of the Julia sets to the other Julia set. Secondly, the continuous population competition model is analyzed, the Julia set of the competition model is discretized, the feedback control method and the optimal control method are used to control it, and the fractal box dimension corresponding to each Julia set is calculated. The complexity of the Julia set and the domain of attraction is characterized by the value of fractal box dimension. The ideas and methods of Julia set are considered in the real system, but the Julia set itself is defined in the complex number field, so the Julia set is extended to the complex system population competition model at the end of this paper. The population competition model is extended to the complex number domain, and the fractal Julia set is applied to the discrete population competition model. The stability of the system is judged by using the Jury criterion, and the Julia set of the complex population competition model is established. The effect of the initial population number on the model is considered. The model Julia set is controlled reasonably by feedback control and tracking control, and in the actual ecosystem, the artificial disturbance is added to the population quantity to protect the biological population and maintain the ecological balance. For convenience, the scope of this paper is limited to the competitive relationship between two species.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O175;O189
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳希;;三種群競(jìng)爭(zhēng)系統(tǒng)的穩(wěn)定性[J];福建教育學(xué)院學(xué)報(bào);2012年01期
2 張昌波,,俞元洪;兩種群競(jìng)爭(zhēng)系統(tǒng)持續(xù)生存的條件[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯(中文版);1994年03期
3 趙春喜;;基于阻滯增長(zhǎng)模型的三種群競(jìng)爭(zhēng)模型[J];科技資訊;2008年34期
4 李曉康;;兩種群競(jìng)爭(zhēng)系統(tǒng)的穩(wěn)定性及其數(shù)值仿真[J];三峽大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期
5 吳愛(ài)華;王婷;張建勛;;環(huán)境噪聲對(duì)具有捕獲的種群競(jìng)爭(zhēng)系統(tǒng)的影響[J];寧波大學(xué)學(xué)報(bào)(理工版);2009年04期
6 王瑞平;;遷移在一類(lèi)二種群競(jìng)爭(zhēng)模型中引起的分岔[J];河南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年03期
7 王拉娣,董雨滋;一類(lèi)兩種群競(jìng)爭(zhēng)系統(tǒng)的定性分析[J];工程數(shù)學(xué)學(xué)報(bào);1993年01期
8 胡廣平;;兩種群競(jìng)爭(zhēng)模型的定性分析[J];高等數(shù)學(xué)研究;2008年01期
9 楊霞;趙珂;;一類(lèi)兩種群競(jìng)爭(zhēng)離散系統(tǒng)的持久性[J];兵團(tuán)教育學(xué)院學(xué)報(bào);2009年02期
10 董雨滋;孫鳳亭;;一類(lèi)兩種群競(jìng)爭(zhēng)系統(tǒng)生態(tài)模型的研究[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年01期
相關(guān)碩士學(xué)位論文 前8條
1 陳淑庭;兩類(lèi)種群競(jìng)爭(zhēng)模型的研究[D];廣州大學(xué);2016年
2 張棉棉;種群競(jìng)爭(zhēng)系統(tǒng)分形動(dòng)力學(xué)與控制[D];山東大學(xué);2017年
3 張雅軒;帶有時(shí)滯的種群競(jìng)爭(zhēng)模型的解展開(kāi)[D];天津大學(xué);2008年
4 王巍;兩類(lèi)具有年齡結(jié)構(gòu)的n種群競(jìng)爭(zhēng)系統(tǒng)的最優(yōu)輸入率控制[D];天津師范大學(xué);2010年
5 陳廣業(yè);離散自治兩種群競(jìng)爭(zhēng)與捕食模型的研究[D];新疆大學(xué);2011年
6 張志明;具有階段結(jié)構(gòu)離散Ricker型種群競(jìng)爭(zhēng)模型的動(dòng)力學(xué)研究[D];鄭州大學(xué);2012年
7 王治民;一類(lèi)具有時(shí)滯的種群相互競(jìng)爭(zhēng)系統(tǒng)的穩(wěn)定性區(qū)域的劃分[D];長(zhǎng)春工業(yè)大學(xué);2014年
8 王倩;季節(jié)交替對(duì)兩競(jìng)爭(zhēng)物種模型的動(dòng)態(tài)行為影響分析[D];陜西師范大學(xué);2013年
本文編號(hào):2393047
本文鏈接:http://sikaile.net/kejilunwen/yysx/2393047.html