多層積分值三次樣條擬插值
[Abstract]:Aim in practical problems, the function values at the nodes of some interpolation problems are often unknown, but only the integral values on the continuous equidistant intervals are known. Based on the integral value of unknown function in the interval of continuous equidistant and the technique of multilayer spline quasi interpolation, this paper presents a method to solve the problem of function reconstruction. This method is called multilayer integral value cubic spline quasi-interpolation method. Firstly, the linear combination of the integral values is used to approximate the function values at the nodes, then, the traditional cubic B-spline quasi interpolation and the corresponding error functions are used to realize the multilayer cubic spline quasi interpolation. Finally, the polynomial reproduction and error estimation of the cubic spline quasi-interpolation operator with two-layer integral value are given. Results the infinitely differentiable function is chosen to compare the multilayer integral value cubic spline quasi interpolation method and the existing integral value cubic spline quasi interpolation method. Numerical experiments show that the approximation error and numerical convergence order of the proposed method are slightly superior. Conclusion in this paper, the multilayer cubic spline quasi interpolation function can approach the original function, first order and second order derivative function well on the whole. The proposed method has better approximation error and numerical convergence order than the existing integral value cubic spline quasi-interpolation method. This method is universal for the function reconstruction of integral values on the continuous equidistant interval.
【作者單位】: 浙江工商大學(xué)數(shù)學(xué)系;大連理工大學(xué)數(shù)學(xué)科學(xué)學(xué)院;
【基金】:國家自然科學(xué)基金項(xiàng)目(11401526,11271328,11671068) 浙江省自然科學(xué)基金項(xiàng)目(LY14A010001)~~
【分類號(hào)】:O241.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 顧銀魯;宋楨楨;;R積分與L積分的轉(zhuǎn)化[J];河南教育學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年04期
2 王才士;;S積分[J];西北師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1991年01期
3 黃江燕;于秀清;方文青;;粗積分的動(dòng)態(tài)特征[J];山東大學(xué)學(xué)報(bào)(理學(xué)版);2009年11期
4 賀少林;概率積分的一種新表達(dá)形式及其應(yīng)用[J];湘潭大學(xué)自然科學(xué)學(xué)報(bào);1986年03期
5 蔣彥,潘進(jìn);用局部化方法確定積分序列的極限[J];數(shù)學(xué)學(xué)習(xí);1996年04期
6 石冰;;格值測度和格值積分[J];太原重型機(jī)械學(xué)院學(xué)報(bào);1993年03期
7 李毅俠;;G積分的性質(zhì)[J];湘南學(xué)院學(xué)報(bào);2008年05期
8 溫倩;;Maple軟件在近似積分中的應(yīng)用[J];連云港職業(yè)技術(shù)學(xué)院學(xué)報(bào);2009年01期
9 葉懷安;改善積分定義,,建立更完善的積分理論教學(xué)新體系(數(shù)學(xué)系實(shí)分析課十年教學(xué)改革實(shí)踐系列成果之一)[J];教育與現(xiàn)代化;1994年02期
10 邢梯良;瑕積分中易出現(xiàn)的錯(cuò)誤[J];工科數(shù)學(xué);1990年04期
相關(guān)碩士學(xué)位論文 前2條
1 王曉碩;積分概念的近代發(fā)展[D];遼寧師范大學(xué);2002年
2 李冉;弦冪積分與弦長積分[D];西南大學(xué);2013年
本文編號(hào):2388176
本文鏈接:http://sikaile.net/kejilunwen/yysx/2388176.html