天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

一類(lèi)非局部廣義彈性模型混合形式的有限元數(shù)值方法

發(fā)布時(shí)間:2018-12-17 03:22
【摘要】:本文考慮如下一類(lèi)非局部廣義彈性模型:其中,Ω =(0,1),d~+0和d~-0分別表示左右擴(kuò)散系數(shù),表示源匯項(xiàng),0D_y~β和yD_1~β分別表示β階左、右Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)算子.在此模型中,同時(shí)出現(xiàn)了積分運(yùn)算和求導(dǎo)運(yùn)算,于是,引入一個(gè)中間變量來(lái)求解此類(lèi)積分微分方程的想法是自然的.通過(guò)令被積函數(shù)中分?jǐn)?shù)階導(dǎo)數(shù)的部分作為中間變量,我們將原問(wèn)題分解為一個(gè)1-α階積分方程和一個(gè)β階微分方程,由此可以定義其混合形式的變分格式.因?yàn)榈玫降膬蓚(gè)等價(jià)方程不需要滿(mǎn)足一定的耦合關(guān)系,可獨(dú)立求解,我們只需證明雙線性形式在空間H-(1-α)/2(Ω)×H0β/2(Ω)中具有強(qiáng)制性和連續(xù)性,根據(jù)Lax-Milgram引理即可得到混合問(wèn)題的變分解的適定性.在分?jǐn)?shù)階積分方程解的適定性的討論中,我們也得到了一種關(guān)于一類(lèi)第一型Fredholm積分方程在空間H-(1-α)/2(Ω)中可解性的判定準(zhǔn)則.基于混合形式的變分原理,進(jìn)一步定義了混合形式的有限元離散格式,并證明了此格式數(shù)值解的存在唯一性.針對(duì)這一數(shù)值模擬,我們利用插值算子和L2投影算子的誤差估計(jì)性質(zhì)分別給出了關(guān)于中間變量和最終變量的能量模估計(jì).數(shù)值試驗(yàn)的結(jié)果驗(yàn)證了此格式的準(zhǔn)確性.由于分?jǐn)?shù)階算子具有非局部性質(zhì),在由此得到的離散格式中,線性方程組的系數(shù)矩陣多為稠密矩陣.對(duì)于一個(gè)N階問(wèn)題而言,矩陣的存儲(chǔ)量為O(N2),直接求解(如Gauss消元法)的計(jì)算量為O(N~3),伴隨著N的增大,問(wèn)題的復(fù)雜度將使得計(jì)算時(shí)間過(guò)長(zhǎng)而喪失了算法的高效性.于是,我們要為此類(lèi)問(wèn)題的求解尋找一種實(shí)現(xiàn)加速的計(jì)算方法.當(dāng)我們選擇分片常數(shù)多項(xiàng)式函數(shù)和分片線性多項(xiàng)式函數(shù)分別近似中間變量和最終變量時(shí),經(jīng)過(guò)計(jì)算發(fā)現(xiàn),與離散格式相對(duì)應(yīng)的系數(shù)矩陣具有或部分具有Toeplitz結(jié)構(gòu).我們知道,Toeplitz矩陣的存儲(chǔ)量可降低為O(N),且Toeplitz矩陣-向量積的計(jì)算量為O(N log N),因此,我們可以在共軛梯度法的基礎(chǔ)上設(shè)計(jì)一種求解此類(lèi)線性方程組的快速算法,使得矩陣的存儲(chǔ)量為O(N),每步迭代的計(jì)算量為O(N log N).對(duì)一些條件數(shù)不好的矩陣而言,加入合適的預(yù)處理子可以進(jìn)一步減少迭代次數(shù)從而提高計(jì)算效率.數(shù)值試驗(yàn)的結(jié)果驗(yàn)證了此快速算法的有效性.
[Abstract]:In this paper, we consider a class of nonlocal generalized elastic models, where 惟 = (0 ~ 1), d ~ 0 and d ~ 0 denote the left and right diffusivity coefficient, denote the source term, and denote the left and right Riemann-Liouville fractional derivative operators of 尾 order respectively. In this model, there are integral operations and derivation operations at the same time, so it is natural to introduce an intermediate variable to solve this kind of integrodifferential equation. By taking the fractional derivative part of the integrable function as the intermediate variable, we decompose the original problem into an integral equation of order 1- 偽 and a differential equation of order 尾, and then define its mixed form variational scheme. Because the two equivalent equations do not need to satisfy a certain coupling relation and can be solved independently, we only need to prove that the bilinear form is mandatory and continuous in the space H- (1- 偽) / 2 (惟) 脳 H0 尾 / 2 (惟). According to the Lax-Milgram 's Lemma, we can obtain the proper definiteness of the variational decomposition of the mixed problem. In the discussion of the fitness of solutions for fractional integral equations, we also obtain a criterion for the solvability of a class of first type Fredholm integral equations in space H- (1- 偽) / 2 (惟). Based on the variational principle of mixed form, the finite element discrete scheme of mixed form is further defined, and the existence and uniqueness of the numerical solution of the scheme are proved. For this numerical simulation, we give the energy modulus estimates for intermediate variables and final variables by using the error estimation properties of interpolation operator and L2 projection operator. The results of numerical experiments verify the accuracy of the scheme. Because of the nonlocal property of fractional order operators, the coefficient matrices of linear equations are dense matrices in the discrete schemes. For a problem of order N, the storage of matrix is O (N2), and the computation of direct solution (such as Gauss elimination method) is O (N3), which is accompanied by the increase of N. The complexity of the problem will make the computation time too long and lose the efficiency of the algorithm. Therefore, we need to find an accelerated computing method for solving this kind of problem. When we select piecewise constant polynomial function and piecewise linear polynomial function to approximate intermediate variable and final variable respectively, we find that the coefficient matrix corresponding to discrete scheme has or partly has Toeplitz structure. We know that the storage of Toeplitz matrix can be reduced to O (N), and the computation of Toeplitz matrix-vector product is O (N log N),. Therefore, we can design a fast algorithm for solving this kind of linear equations on the basis of conjugate gradient method. So that the memory of the matrix is O (N), the computation of each iteration is O (N log N). For some matrices with poor condition number, adding a suitable preprocessor can further reduce the number of iterations and improve the computational efficiency. The effectiveness of this fast algorithm is verified by numerical experiments.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O241.82

【相似文獻(xiàn)】

相關(guān)期刊論文 前1條

1 徐俊明;關(guān)于圖論中混合形式的Menger定理的證明[J];華中工學(xué)院學(xué)報(bào);1984年02期

相關(guān)碩士學(xué)位論文 前1條

1 賈略羚;一類(lèi)非局部廣義彈性模型混合形式的有限元數(shù)值方法[D];山東師范大學(xué);2017年

,

本文編號(hào):2383567

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2383567.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)8cc0d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
欧美黑人巨大一区二区三区| 中文字幕高清免费日韩视频| 最新午夜福利视频偷拍| 亚洲国产一区精品一区二区三区色| 激情图日韩精品中文字幕| 国产精品日韩精品最新| 视频一区二区 国产精品| 欧美成人黄色一区二区三区| 91在线国内在线中文字幕| 日韩女优精品一区二区三区| 国产精品人妻熟女毛片av久 | 中文字幕久热精品视频在线| 国产日韩综合一区在线观看| 国产成人精品一区在线观看| 精品国产亚洲一区二区三区| 成人你懂的在线免费视频| 粉嫩国产一区二区三区在线| 日韩三级黄色大片免费观看| 91人妻人人精品人人爽| 欧美成人久久久免费播放| 激情综合网俺也狠狠地| 午夜色午夜视频之日本| 午夜午夜精品一区二区| 午夜精品久久久99热连载| 日韩亚洲精品国产第二页| 欧美黄色成人真人视频| 亚洲男女性生活免费视频| 亚洲精品蜜桃在线观看| 富婆又大又白又丰满又紧又硬| 日韩精品日韩激情日韩综合| 狠狠亚洲丁香综合久久| 亚洲欧美日韩在线看片| 欧美成人久久久免费播放| 丰满人妻一二区二区三区av| 国产免费观看一区二区| 欧美精品久久男人的天堂| 亚洲欧美一二区日韩高清在线| 日韩色婷婷综合在线观看| 果冻传媒精选麻豆白晶晶| 男人操女人下面国产剧情| 91国内视频一区二区三区|