張量余單子的余半單性與余辮子結(jié)構(gòu)
發(fā)布時間:2018-12-16 09:34
【摘要】:本文研究了張量余單子的余半單性和余表示范疇,給出了其余半單性和余可裂性的等價性定理.并證明了其余表示范疇是辮子范疇當(dāng)且僅當(dāng)該張量余單子是余辮子的.作為應(yīng)用研究了張量型Hom-雙代教的Hom-余模范疇的半單性和辮子結(jié)構(gòu).
[Abstract]:In this paper, we study the category of cosemisimple and corepresentation of Zhang Liang cosimple, and give the equivalence theorems of other semi-simple and cosplitting. It is proved that the other representation categories are braided categories if and only if the remainder of Zhang Liang's list is cobraided. As an application, the semi-simple and braided structure of the category of Hom- comodules taught by Zhang Liang type Hom- bigenerational is studied.
【作者單位】: 曲阜師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院;南京理工大學(xué)理學(xué)院;
【基金】:國家自然科學(xué)基金(No.11371088) 山東省自然科學(xué)基金(No.ZR2016AQ03) 國家專項基金數(shù)學(xué)天元基金(No.11626138,No.11626139) 曲阜師范大學(xué)科技計劃(No.xkj201514)
【分類號】:O154.1
,
本文編號:2382138
[Abstract]:In this paper, we study the category of cosemisimple and corepresentation of Zhang Liang cosimple, and give the equivalence theorems of other semi-simple and cosplitting. It is proved that the other representation categories are braided categories if and only if the remainder of Zhang Liang's list is cobraided. As an application, the semi-simple and braided structure of the category of Hom- comodules taught by Zhang Liang type Hom- bigenerational is studied.
【作者單位】: 曲阜師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院;南京理工大學(xué)理學(xué)院;
【基金】:國家自然科學(xué)基金(No.11371088) 山東省自然科學(xué)基金(No.ZR2016AQ03) 國家專項基金數(shù)學(xué)天元基金(No.11626138,No.11626139) 曲阜師范大學(xué)科技計劃(No.xkj201514)
【分類號】:O154.1
,
本文編號:2382138
本文鏈接:http://sikaile.net/kejilunwen/yysx/2382138.html
最近更新
教材專著