內(nèi)交換亞循環(huán)群上的正則凱萊地圖
發(fā)布時間:2018-12-15 17:54
【摘要】:本文主要研究有限群論在地圖中的作用.我們分類了有限內(nèi)交換亞循環(huán)群上的中心對稱正則凱萊地圖.另外,作為群作用的另一個表現(xiàn),我們探究了一類p群Mp(2,1)上的skew-morphism.有限內(nèi)交換亞循環(huán)群在同構(gòu)意義下共有三類:第一類是四元數(shù)群Q8,第二類和第三類我們在本文中分別用Mp,q(m,r)和Mp(n,m)標(biāo)記,它們的定義請參見正文.在本論文中,我們研究的第一個問題是分類內(nèi)交換亞循環(huán)的中心對稱正則凱萊地圖.四元數(shù)群Q8上的中心對稱正則凱萊地圖在其它文獻(xiàn)中已經(jīng)被考慮了,因此我們不再考慮這個群.第二類內(nèi)交換亞循環(huán)群Mp,q(m,r)同時也是內(nèi)循環(huán)群,我們證明了這類群只有當(dāng)q=2即Mp,2(m,r)上存在中心對稱正則凱萊地圖.設(shè)p-1=2es,(s,2)=1,當(dāng)m≥2時,群Mp,2(m,r)上存在s個互不同構(gòu)的中心對稱正則凱萊地圖.而第三類內(nèi)交換亞循環(huán)群Mp(n,m)是一類p群,我們證明了只有當(dāng)p=2而且m=n或者n=m+1時,即只有群M2(n,n)和M2(n+1,n)上存在中心對稱正則凱萊地圖.在同構(gòu)意義下,它們皆只有一個4度中心對稱正則凱萊地圖.我們研究的第二個問題是討論p群上skewv-同態(tài)的存在性.一個有限群G上存在正則凱萊地圖當(dāng)且僅當(dāng)G存在滿足一定條件的skew-同態(tài).因此研究有限群的skew-同態(tài)也是地圖理論的一部分重要內(nèi)容.在本文中,我們證明了Mp(2,1)不存在p2階skew-morphism.
[Abstract]:This paper focuses on the role of finite group theory in maps. We classify the centrosymmetric canonical Calais maps on finite inner commutative subcyclic groups. In addition, as another representation of group action, we investigate the skew-morphism. on a class of p-group Mp (2t1). There are three classes of finite inner commutative subcyclic groups in the sense of isomorphism: the first is a quaternion group Q8, the second and the third are marked by Mp,q (MKR) and Mp (NM) in this paper, respectively. For their definitions, please refer to the text. In this paper, the first problem we study is the centrosymmetric canonical Calais map of commutative subcycles within the classification. The centrosymmetric canonical Calais map on quaternion group Q8 has been considered in other literatures, so we do not consider this group. The second kind of inner commutative subcyclic group Mp,q (MKR) is also an inner cyclic group. We prove that only if Q2, that is Mp,2 (MKR), there exists a centrosymmetric regular Calais map. Let p-1m2es, (sb2) = 1. when m 鈮,
本文編號:2381058
[Abstract]:This paper focuses on the role of finite group theory in maps. We classify the centrosymmetric canonical Calais maps on finite inner commutative subcyclic groups. In addition, as another representation of group action, we investigate the skew-morphism. on a class of p-group Mp (2t1). There are three classes of finite inner commutative subcyclic groups in the sense of isomorphism: the first is a quaternion group Q8, the second and the third are marked by Mp,q (MKR) and Mp (NM) in this paper, respectively. For their definitions, please refer to the text. In this paper, the first problem we study is the centrosymmetric canonical Calais map of commutative subcycles within the classification. The centrosymmetric canonical Calais map on quaternion group Q8 has been considered in other literatures, so we do not consider this group. The second kind of inner commutative subcyclic group Mp,q (MKR) is also an inner cyclic group. We prove that only if Q2, that is Mp,2 (MKR), there exists a centrosymmetric regular Calais map. Let p-1m2es, (sb2) = 1. when m 鈮,
本文編號:2381058
本文鏈接:http://sikaile.net/kejilunwen/yysx/2381058.html
最近更新
教材專著