多辛哈密頓系統(tǒng)中的一些新的保結(jié)構(gòu)算法
[Abstract]:Many partial differential equations can be written into a multi-symplectic Hamiltonian system, such as sine-Gordon equation, nonlinear Schrodinger equation, KdV equation, Camassa-Holm equation, Maxwell equation, nonlinear wave equation and so on. There are three local conservation laws for multi-symplectic Hamiltonian systems, namely, multi-symplectic conservation laws, local energy conservation laws and local momentum conservation laws. It is very meaningful to construct a numerical algorithm that preserves one or more of the conservation laws. Multi-symplectic conservation law is an important geometric property of multi-symplectic Hamiltonian system. In the past ten or twenty years, a large number of numerical methods for preserving discrete multiple symplectic conservation laws have been developed. In this paper, we further study the multi-symplectic Fourier spectral method for Kawahara equation, and establish the relationship between spectral differential matrix and discrete Fourier transformation, so that the fast Fourier algorithm is introduced into the computation of the conserved structure algorithm. Energy conservation is a key property in mechanical systems, which plays an important role in the study of the properties of solutions. In some examples, the conservation of energy is directly used to prove the stability of numerical methods. Energy is the most important invariant of many evolution equations, so energy conservation method has attracted the interest of many researchers and has been developed rapidly. In this paper, we use wavelet collocation method in space and average vector field method in time to construct a global energy preserving method for general multi-symplectic Hamiltonian systems. We also propose a method for preserving local energy. In addition to energy conservation laws, the multi-symplectic Hamiltonian system also has momentum conservation laws. Momentum conservation law is also an important invariant in physics, but it is seldom studied in the literature. In this paper, we give a method for preserving the local momentum of a general multi-symplectic form Hamiltonian system. It is worth noting that the local energy preserving method and the local momentum preserving method are independent of boundary conditions and can be applied to a large class of conservative partial differential equations. In this paper, we also construct a conserved Fourier pseudospectral algorithm for coupled Schrodinger equation. We prove an important result that the semi-norm induced by Fourier by spectral method is equivalent to that induced by finite-difference method. Due to this result and the conservation of discrete mass and energy in numerical methods, we prove that the Fourier pseudospectral solution is bounded in the sense of maximum modulus. Thus, we prove that the scheme is solvable and unconditionally stable. Only if the solution of the original equation satisfies some regularity, we analyze the error estimate of the algorithm in the sense of L2-norm, which is the first proof of convergence of the structure-preserving pseudospectral method. Numerical experiments confirm the theoretical analysis.
【學(xué)位授予單位】:南京師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:O241.82
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 方金英;印度新總理 帕·文·納拉辛哈·拉奧[J];世界知識(shí);1991年14期
2 ;[J];;年期
相關(guān)重要報(bào)紙文章 前10條
1 江亞平、王建剛;印中關(guān)系已相當(dāng)成熟[N];人民日?qǐng)?bào);2003年
2 記者 熊昌義;印稱已經(jīng)制定出印巴會(huì)談“路線圖”[N];新華每日電訊;2003年
3 ;“強(qiáng)奸”言論不當(dāng)印度高官引眾怒[N];新華每日電訊;2013年
4 記者章亞東;斯總理希望與中國(guó)建立強(qiáng)有力經(jīng)濟(jì)關(guān)系[N];人民日?qǐng)?bào);2003年
5 本報(bào)駐印度記者 錢峰;印度也稱要“先發(fā)制人”[N];人民日?qǐng)?bào);2003年
6 記者熊昌義;印外長(zhǎng)對(duì)印中關(guān)系表示樂觀[N];人民日?qǐng)?bào);2003年
7 記者吳迎春、張靜宇、錢峰;印愿加強(qiáng)與我全面合作[N];人民日?qǐng)?bào);2003年
8 記者 繆毅容;加強(qiáng)合作促進(jìn)共同發(fā)展[N];解放日?qǐng)?bào);2012年
9 記者 章亞東;猛虎組織再次拒絕和平建議[N];新華每日電訊;2003年
10 本報(bào)駐印度記者 張靜宇;印向巴發(fā)出積極信息[N];人民日?qǐng)?bào);2003年
相關(guān)博士學(xué)位論文 前1條
1 龔躍政;多辛哈密頓系統(tǒng)中的一些新的保結(jié)構(gòu)算法[D];南京師范大學(xué);2015年
,本文編號(hào):2377072
本文鏈接:http://sikaile.net/kejilunwen/yysx/2377072.html