天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

幾類拋物型方程反邊值問題的數(shù)值求解

發(fā)布時間:2018-12-13 16:02
【摘要】:擴散過程是一類重要的自然現(xiàn)象,從數(shù)學(xué)研究上來看,擴散過程在一定的假設(shè)條件下可以用帶有定解條件的拋物型方程模型來描述.在很多場合,擴散過程的物理機制是明確的(對應(yīng)于擴散方程是已知的),但描述擴散過程的邊界狀態(tài)信息是未知的,此時需要通過其他可測量的間接信息來反演邊界狀態(tài)信息,進而確定整個擴散過程.這類問題就是擴散方程模型的反邊值問題.邊界狀態(tài)是拋物型方程描述擴散系統(tǒng)的重要參數(shù),包括邊界形狀和邊界條件參數(shù).邊界條件主要包括Dirichlet邊界條件、Neumann邊界條件和更一般的Robin(阻尼)邊界條件.Robin邊界條件中的Robin系數(shù)表征了邊界界面對整個擴散過程的阻尼作用,在工程應(yīng)用中有重要的意義.關(guān)于前兩種邊界條件的反問題,已經(jīng)有很多研究工作,而關(guān)于Robin系數(shù)反演的研究工作較少,尤其是不連續(xù)Robin系數(shù)的反演問題,已有工作更少.數(shù)學(xué)上的難點在于,Robin系數(shù)的重建是一·類非線性不適定問題.這顯然增加了反問題理論分析和數(shù)值實現(xiàn)的難度.因此,本文圍繞Robin系數(shù)反演及相關(guān)問題展開研究,主要工作包括以下三個方面.首先,研究利用邊界上關(guān)于時間方向的積分型數(shù)據(jù),反演依賴于空間變量的Robin系數(shù).在很多物理情形下,由于客觀條件的限制,擴散物濃度的逐點數(shù)據(jù)很難測量,而擴散物濃度的某種(時間或空間)平均值相對易于測量,因此研究這類非局部積分型測量數(shù)據(jù)更具有實際意義。近年來,利用該類數(shù)據(jù)反演相關(guān)參數(shù)的研究也得到了廣泛的重視,本部分反問題的測量數(shù)據(jù)正是此類非局部數(shù)據(jù).對此反問題,本文建立了唯一性,并且首次建立了條件穩(wěn)定性.證明思路是,基于解的位勢表達式,將非線性反問題模型轉(zhuǎn)換為關(guān)于待定密度函數(shù)和未知Robin系數(shù)的耦合的非線性積分方程組.在此基礎(chǔ)上,構(gòu)造了雙參數(shù)正則化泛函,并從理論上嚴格分析了優(yōu)化方案的適定性和收斂性.在數(shù)值實現(xiàn)方面,與已有的共軛梯度法相比,我們提出的交替迭代法計算更快,反演效果更好,對于誤差較大的噪音數(shù)據(jù),這種優(yōu)勢更明顯.其次,研究利用末時刻的溫度(濃度)分布同時反演邊界Robin系數(shù)和初始狀態(tài)的反問題.初始狀態(tài)的反演是經(jīng)典的線性反問題,在工業(yè)中有廣泛的應(yīng)用背景,但是在邊界Robin系數(shù)也未知的情形下,這類反問題除了未知成份更多以外,更重要的是,反問題變?yōu)榉蔷性的了,從而使得初始狀態(tài)和Robin系數(shù)的同時反演難度更大,也更有意義.現(xiàn)有的研究基本還是空白.針對該問題,本文利用最值原理和特征函數(shù)展開理論,證明了 Robin系數(shù)在允許集內(nèi)是唯一確定的.進一步,基于數(shù)據(jù)磨光化和結(jié)合初值的擬逆正則化思想,提出了一種同時重建兩個參數(shù)的正則化方案,并且給出了正則化參數(shù)選取策略和誤差分析.本文的重建方案分兩步進行.第一步重建Robin系數(shù),第二步基于重建的Robin系數(shù)重建初值,顯然第一步的重建對整個重建方案至關(guān)重要,并且非線性地影響著整個重建方案.本文細致分析了兩步之間的誤差傳遞,并給出了正則化參數(shù)的選取策略,這是本文的重要創(chuàng)新之處.在此基礎(chǔ)上,基于位勢理論提出了有效的數(shù)值實現(xiàn)方案,數(shù)值結(jié)果與理論分析的結(jié)果一致.最后,研究一維擴散模型中,利用邊界一端的Dirichlet數(shù)據(jù)反演邊界另一端不連續(xù)的Robin系數(shù)(依賴于時間變量的函數(shù)).在實際工程中,邊界Robin系數(shù)不連續(xù)是很重要的情形,可能預(yù)示著系統(tǒng)內(nèi)部出現(xiàn)某類故障,那么Robin系數(shù)就可以作為檢測系統(tǒng)是否出現(xiàn)故障的重要指標(biāo).此時,不連續(xù)Robin系數(shù)的檢測尤其是不連續(xù)位置的檢測就具有特別重要的意義.對不連續(xù)的Robin系數(shù),本文基于Fourier變換,在L2空間的允許集內(nèi)建立了反問題的唯一性.我們的結(jié)果不同于連續(xù)函數(shù)空間的唯一性,是本文另一理論創(chuàng)新點.此外,本文將原問題轉(zhuǎn)化為求解帶全變差罰項的優(yōu)化問題,并對該正則化方案進行了理論分析.數(shù)值實現(xiàn)方面,提出了一種有效的雙循環(huán)迭代算法.該算法的基本思想是將非線性的數(shù)據(jù)匹配項和近似全變差罰項交替迭代,實現(xiàn)極小化.這種交替迭代的策略一方面可以降低原問題的非線性,無需考慮正則化參數(shù)的選取,另一方面可以提高計算速度.同時,這種根據(jù)非線性項的不同性質(zhì)交替迭代處理的思想,還可以推廣到包含多個非線性項的數(shù)值實現(xiàn)中,對其它相關(guān)問題的數(shù)值求解具有重要的借鑒意義.
[Abstract]:The diffusion process is an important natural phenomenon. From the mathematical research, the diffusion process can be described by a parabolic equation model with a fixed solution under certain assumptions. In many cases, the physical mechanism of the diffusion process is clear (corresponding to the diffusion equation is known), but the boundary state information describing the diffusion process is unknown, at which time the boundary state information needs to be inverted by other measurable indirect information, and thus the entire diffusion process is determined. This kind of problem is the inverse boundary value problem of the diffusion equation model. The boundary condition is an important parameter of the parabolic equation describing the diffusion system, including boundary shape and boundary condition parameters. Boundary conditions mainly include Dirichlet boundary conditions, Neumann boundary conditions and more general Robin (damping) boundary conditions. The Robin coefficient in the Robin boundary condition indicates the damping effect of the boundary interface on the whole diffusion process, which is of great significance in the engineering application. There are many researches on the inverse problem of the first two boundary conditions, and the research work on the inversion of the Robin coefficient is less, especially the problem of the inversion of the non-continuous Robin coefficient, and has less work. The difficulty of the mathematics is that the reconstruction of the Robin coefficient is a class-class non-linear discomfort problem. This obviously increases the difficulty of theoretical analysis and numerical implementation of the inverse problem. Therefore, this paper studies the inversion of the Robin coefficient and the related problems, and the main work includes the following three aspects. First, the integration type data on the time direction on the boundary is used to retrieve the Robin coefficient which is dependent on the spatial variable. In many physical circumstances, the point-by-point data of the diffusion concentration is difficult to measure due to the limitation of objective conditions, and some (time or space) average value of the diffusion concentration is relatively easy to measure, so it is more practical to study the non-local integral type measurement data. In recent years, the data of this kind of data are used to retrieve the relevant parameters, and the measurement data of this partial inverse problem is this kind of non-local data. In this paper, the uniqueness is set up in this paper, and the condition stability is established for the first time. It is proved that the non-linear inverse problem model is transformed into a non-linear integral equation system with respect to the coupling of the undetermined density function and the unknown Robin coefficient based on the potential expression of the solution. On this basis, the double-parameter regularization function is constructed, and the appropriate and the convergence of the optimization scheme are analyzed strictly from the theory. In the aspect of numerical realization, the alternative iteration method proposed by us is faster, the inversion effect is better, and the advantage is more obvious for the noise data with large error compared with the existing common-current gradient method. Next, the inverse problem of the boundary Robin coefficient and the initial state is studied by using the temperature (concentration) distribution at the end time. the inversion of the initial state is a classical linear inverse problem, which has a wide application background in the industry, but in the case where the boundary Robin coefficient is also unknown, the inverse problem is more important than the unknown component, and more importantly, the inverse problem becomes non-linear, so that the inversion difficulty of the initial state and the Robin coefficient is more difficult and more meaningful. The existing research is essentially blank. In order to solve this problem, this paper uses the principle of the maximum value and the characteristic function to expand the theory, and proves that the Robin coefficient is uniquely determined within the permission set. Further, based on the quasi-inverse regularized idea of data burnishing and combining initial values, a regularized scheme for reconstructing two parameters at the same time is proposed, and the regularization parameter selection strategy and error analysis are given. The reconstruction scheme of this paper is carried out in two steps. The first step rebuilds the Robin coefficient, and the second step reconstructs the initial value based on the reconstructed Robin coefficient, and it is clear that the reconstruction of the first step is critical to the overall reconstruction scheme and that the entire reconstruction scheme is non-linear. In this paper, the error transfer between two steps is analyzed in detail, and the selection strategy of regularized parameters is given, which is the important innovation of this paper. On this basis, the effective numerical solution is proposed based on the potential theory, and the numerical results are consistent with the results of the theoretical analysis. Finally, in the one-dimensional diffusion model, the non-continuous Robin coefficient at the other end of the boundary is inverted by the Dirichlet data at one end of the boundary (as a function of the time variable). In practical engineering, the non-continuous boundary Robin coefficient is very important, which may indicate a certain type of fault inside the system, then the Robin coefficient can be used as an important index for detecting the failure of the system. In this case, the detection of the non-continuous Robin coefficient, in particular the detection of the discontinuous position, is of particular importance. In this paper, the uniqueness of the inverse problem is set up in the permission set of the L2 space based on the Fourier transform. Our results are different from the uniqueness of the continuous function space, which is another theoretical innovation point of this paper. In addition, this paper is to transform the original problem into the optimization problem with the total variogram, and the regularized scheme is analyzed theoretically. In this paper, an effective two-cycle iterative algorithm is proposed. The basic idea of the algorithm is to iterate the non-linear data matching term and the approximate full-variation penalty term to realize the minimization. The strategy of the alternative iteration can reduce the non-linearity of the original problem on the one hand, without taking into account the selection of the regularized parameters, and on the other hand, the calculation speed can be improved. At the same time, the idea of alternating iterative processing according to different properties of non-linear term can also be extended to the numerical solution containing multiple non-linear terms, which has important reference significance to the numerical solution of other related problems.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O241.82

【相似文獻】

相關(guān)期刊論文 前10條

1 莫嘉琪;The Nonlinear Predator-Prey Singularly Perturbed Robin Initial Boundary Value Problems for Reaction Diffusion System[J];Journal of Shanghai Jiaotong University;2003年02期

2 ;A Robin Problem for Quasi-linear System[J];數(shù)學(xué)季刊;2004年02期

3 張艷芳;張鄭芳;;帶正則項的Robin反問題的Γ-收斂性[J];杭州電子科技大學(xué)學(xué)報;2013年03期

4 鄒中華,杜正國,徐偉成;催化劑顆粒中的Robin問題[J];華東化工學(xué)院學(xué)報;1992年06期

5 WU Qinkuan;WANG Weigang;CHEN Xianfeng;XU Yonghong;MO Jiaqi;;Generalized Solution of A Class of Singularly Perturbed Robin Problems for Nonlinear Reaction Diffusion Equation[J];Wuhan University Journal of Natural Sciences;2014年02期

6 郝兆才,劉明海;奇異二階邊值問題的正解[J];工程數(shù)學(xué)學(xué)報;2001年01期

7 楊會生,武錫環(huán),楊作東;一類擬線性橢圓型方程帶平邊值問題解的存在性(英文)[J];工程數(shù)學(xué)學(xué)報;2001年03期

8 孫萬貴,葉建軍,吳開謖 ,陽明珠;抽象邊值問題中的雙半群方法[J];中國原子能科學(xué)研究院年報;2001年00期

9 張霞,李星;非正則型復(fù)合邊值問題[J];寧夏大學(xué)學(xué)報(自然科學(xué)版);2002年03期

10 張福偉,劉進生;一類四階方程邊值問題正解的存在性[J];太原理工大學(xué)學(xué)報;2003年05期

相關(guān)會議論文 前10條

1 牛文清;董瑩;;泛函偏微分方程邊值問題解的漸近性態(tài)[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)研究進展——2004(10)卷——中國數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會第10屆學(xué)術(shù)研討會論文集[C];2004年

2 楊宗孟;;矩形平面應(yīng)力邊值問題的統(tǒng)一奇異函數(shù)解[A];第五屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(第一卷)[C];1996年

3 于錦海;羅東方;朱明;;求解超定大地邊值問題的新方法[A];《大地測量與地球動力學(xué)進展》論文集[C];2004年

4 黎凡;;Pierre Robin 綜合癥嬰兒期腭裂術(shù)后氣道梗阻原因及處理探討[A];第七屆全國唇腭裂學(xué)術(shù)會議論文集[C];2009年

5 張慶華;夏萌;曲媛媛;;解析求解不規(guī)則區(qū)域(線性微分方程)邊值問題的基本構(gòu)想[A];第五屆全國水動力學(xué)學(xué)術(shù)會議暨第十五屆全國水動力學(xué)研討會文集[C];2001年

6 賈繼承;;邊值問題綜述(重力學(xué))[A];1992年中國地球物理學(xué)會第八屆學(xué)術(shù)年會論文集[C];1992年

7 黃金水;朱灼文;;重調(diào)和環(huán)域邊值問題與地幔密度橫向非均勻性[A];1999年中國地球物理學(xué)會年刊——中國地球物理學(xué)會第十五屆年會論文集[C];1999年

8 萬騰;王國民;;Robin序列征患者16例回顧[A];第七屆全國唇腭裂學(xué)術(shù)會議論文集[C];2009年

9 袁光偉;沈隆鈞;周毓麟;;拋物型方程的并行差分[A];中國工程物理研究院科技年報(2000)[C];2000年

10 趙為禮;;奇異非線性Robin問題的奇攝動[A];數(shù)學(xué)·物理·力學(xué)·高新技術(shù)研究進展(一九九六·第六期)——中國數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會第6屆學(xué)術(shù)研討會論文集[C];1996年

相關(guān)重要報紙文章 前1條

1 學(xué)軍;創(chuàng)業(yè)公司Robin:打造超智能辦公室[N];中國證券報;2014年

相關(guān)博士學(xué)位論文 前10條

1 王玉嬋;幾類拋物型方程反邊值問題的數(shù)值求解[D];東南大學(xué);2017年

2 丁友征;幾類邊值問題解的存在性與多重性[D];山東大學(xué);2015年

3 王華;偏微分方程的黏性解、爆破及相關(guān)問題研究[D];山西大學(xué);2015年

4 張洋;偏微分方程兩類邊值問題的定性分析[D];哈爾濱工業(yè)大學(xué);2015年

5 王穎;非線性微分方程邊值問題正解的存在性研究[D];曲阜師范大學(xué);2015年

6 胡雷;幾類分數(shù)階微分方程共振邊值問題解的存在性[D];中國礦業(yè)大學(xué)(北京);2015年

7 沈開明;邊值問題中的特征值優(yōu)化[D];清華大學(xué);2015年

8 吳彥強;微分方程邊值問題的解和正解的存在性[D];中國礦業(yè)大學(xué);2016年

9 林秀麗;幾類非線性微分方程邊值問題的迭代解與變號解[D];曲阜師范大學(xué);2016年

10 譚靜靜;關(guān)于分數(shù)階微分方程邊值問題解的研究[D];北京工業(yè)大學(xué);2016年

相關(guān)碩士學(xué)位論文 前10條

1 張元元;帶Robin邊界條件的2維隨機廣義Ginzburg-Landau方程的適定性及其長時間性態(tài)[D];四川師范大學(xué);2015年

2 楊婧;具有臨界指數(shù)和Robin邊界的kirchhoff方程解的存在性和耗散性[D];四川師范大學(xué);2015年

3 張慧萍;一類拋物型方程Robin邊界系數(shù)的反演[D];東南大學(xué);2015年

4 崔文標(biāo);拉普拉斯方程矩形域上Robin系數(shù)的反演[D];東南大學(xué);2016年

5 楊雪;n階m點邊值問題和四階奇異邊值問題的正解[D];東北大學(xué);2008年

6 邸慶華;各項異性邊值問題與障礙問題解的可積性[D];河北大學(xué);2015年

7 嚴凱;幾類非線性分數(shù)階微分方程邊值問題解的存在性[D];上海師范大學(xué);2015年

8 龔平;幾類非線性分數(shù)階微分方程邊值問題正解的研究[D];昆明理工大學(xué);2015年

9 嚴潔;帶積分邊界條件的邊值問題正解的存在性[D];南京信息工程大學(xué);2015年

10 李莉;三階非線性三點邊值問題解的存在性和唯一性[D];大連交通大學(xué);2015年

,

本文編號:2376813

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2376813.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶512fc***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com