具有快速振蕩項的非自治隨機(jī)p-Laplace方程隨機(jī)吸引子的上半連續(xù)性
發(fā)布時間:2018-12-12 20:23
【摘要】:本文主要研究定義在Rn上的具有快速震蕩項的非自治帶可乘白噪音的隨機(jī)p-Laplace方程吸引子的上半連續(xù)性;借助解的尾部估計,證明了定義在無界域上該系統(tǒng)的拉回漸近緊性.本文考慮如下快速震蕩具可乘白噪音的p-Laplace方程(?)其中,tT,τ∈R,p2和λ0為常數(shù),gε(x,t)為快速震蕩外力,W(t)表示雙邊實值Wiener過程.本文共有四章:第一章,介紹隨機(jī)動力系統(tǒng)、隨機(jī)吸引子及p-Laplace方程的背景及研究現(xiàn)狀,說明本文的主要研究內(nèi)容;給出本論文所需要的一些基礎(chǔ)理論知識:相關(guān)定義和引理.第二章,通過O-U變換消去隨機(jī)項,將上述隨機(jī)微分方程轉(zhuǎn)化為帶隨機(jī)參數(shù)的確定性方程,然后用Galerkin逼近的方法得到解的存在唯一性以說明該p-Laplace方程生成一個隨機(jī)動力系統(tǒng).第三章,給出隨機(jī)P-Laplace方程解的一致估計,并結(jié)合Sobolev緊嵌入定理得到系統(tǒng)在L2(Rn)空間中的漸近緊性,證明系統(tǒng)在L2(Rn)空間存在唯一的隨機(jī)吸引子.第四章,通過證明隨機(jī)動力系統(tǒng)在L2空間上的收斂性,得到隨機(jī)吸引子的上半連續(xù)性.
[Abstract]:In this paper, we mainly study the upper semicontinuity of the attractor of the stochastic p-Laplace equation with fast oscillatory terms defined on Rn with multiplicative white noise, and prove the tension asymptotically compactness of the system defined in unbounded domain by means of the tail estimation of the solution. In this paper, we consider the following p-Laplace equations of fast oscillation with multiplicative white noise (?) Where tT, 蟿 鈭,
本文編號:2375193
[Abstract]:In this paper, we mainly study the upper semicontinuity of the attractor of the stochastic p-Laplace equation with fast oscillatory terms defined on Rn with multiplicative white noise, and prove the tension asymptotically compactness of the system defined in unbounded domain by means of the tail estimation of the solution. In this paper, we consider the following p-Laplace equations of fast oscillation with multiplicative white noise (?) Where tT, 蟿 鈭,
本文編號:2375193
本文鏈接:http://sikaile.net/kejilunwen/yysx/2375193.html
最近更新
教材專著