天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數學論文 >

《方程的理解與修正》研究

發(fā)布時間:2018-12-12 00:37
【摘要】:早期代數學最直接的目的是求解代數方程。本文以韋達(Francois Vieta,1540-1603)的著作合集《分析術》(TheAnalytic Art)中第四部分《方程的理解與修正》(Two Treatises on the Understanding and Amendment of Equations,1615)為主要研究內容,探究其對代數方程理論所做的貢獻。在前篇《方程的理解》(Firstreatise:On Understanding Equations)中,韋達分別運用符號分析法、二項式展開法和方程比較法分析了方程的結構;在后篇《方程的修正》(Seconnd Treatse:On the Amendment of Equations)中,韋達針對各類無法進行數值求解或者數值求解十分困難的方程提出了相應的方程變換法則,使其可以變換為能夠或者容易進行數值求解的新方程。韋達在前后兩篇中都是通過具體的定理或命題展示自己的研究結果,但僅對其中一部分給出了解釋或說明。本文目的在于遵循“古證復原”的原則分析這兩篇中的定理或命題,主要工作如下:第一,在探究韋達列方程的基本原則時,發(fā)現他強調方程與比例之間的聯系,所以本文研讀前篇《方程的理解》時,利用比例的思想復原了韋達在符號分析法與方程比較法中沒有解釋或說明的定理與命題,給出其較為合理的來源分析與證明,從而明確地得出,韋達思想的實質可歸結為恒等式變形。第二,分析后篇《方程的修正》中韋達提供的各類方程變換背后所蘊含的數學思想和方法,結合前篇中的符號分析法、二項式展開法和方程比較法對五種常用的方程變換進行探源,復原了韋達關于方程變換的部分定理,并指出其中的一條錯誤命題。
[Abstract]:The most direct purpose of early algebra is to solve algebraic equations. In this paper, the main content of this paper is "understanding and revising the equation" in the fourth part of "Analytical technique" (TheAnalytic Art) by Francois Vieta,1540-1603 (Two Treatises on the Understanding and Amendment of Equations,1615). To explore its contribution to the theory of algebraic equations. In the previous "understanding of equations" (Firstreatise:On Understanding Equations), Veda uses symbolic analysis method, binomial expansion method and equation comparison method to analyze the structure of the equation. In the latter part of "Correction of equations" (Seconnd Treatse:On the Amendment of Equations), Veda proposes the corresponding equation transformation rules for all kinds of equations which can not be solved numerically or which are very difficult to solve numerically. It can be transformed into a new equation that can be solved numerically or easily. In both the preceding and the following chapters, Veda presents his research results through specific theorems or propositions, but only gives explanations or explanations for some of them. The purpose of this paper is to analyze the theorems or propositions in these two chapters in accordance with the principle of "restoration of ancient evidence". The main work is as follows: first, when exploring the basic principles of the Vedalier equation, it is found that he emphasizes the relation between the equation and the proportion. So in this paper, when we read the previous book "understanding of equation", we use the idea of proportion to restore the theorems and propositions that Veda did not explain or explain in symbolic analysis and equation comparison, and give its more reasonable source analysis and proof. It is clear that the essence of Veda's thought can be summed up as identity deformation. Secondly, it analyzes the mathematical ideas and methods behind the transformation of all kinds of equations provided by Veda in the latter part of "Correction of the equation", and combines the symbolic analysis method in the previous chapter. In this paper, the binomial expansion method and the equation comparison method are used to explore the source of five kinds of commonly used equation transformations, and the partial theorems of Vedar's equation transformation are restored, and one of the wrong propositions is pointed out.
【學位授予單位】:西北大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O151.1

【相似文獻】

相關期刊論文 前10條

1 黃鴻義;;利用韋達定理解題[J];中學教學參考;2009年05期

2 肖運平;;巧用韋達定理解數學題[J];中國電力教育;2010年S1期

3 覃克星;扎根山區(qū)測風云 忠骨獻給黨與民——悼念韋達華同志[J];廣西氣象;1983年02期

4 王軍;;如何用韋達定理求解數學問題[J];現代教育;2011年Z1期

5 孫宏安;韋達與符號代數[J];數學通報;1996年11期

6 趙適紅;;韋達定理的應用初探[J];太原城市職業(yè)技術學院學報;2008年07期

7 王瑞琦;利用韋達定理解方程(組)[J];開封教育學院學報;1999年04期

8 潘玉清;;韋達定理的巧用[J];考試周刊;2009年32期

9 施慧林;;巧用韋達定理和判別式解題[J];中國科技信息;2010年22期

10 錢麗;;我這樣教“韋達定理”[J];數學學習與研究(教研版);2008年10期

相關會議論文 前2條

1 李美功;;試談韋達定理的應用[A];中華教育理論與實踐科研論文成果選編(第3卷)[C];2010年

2 李恒東;;巧用幾何性質 簡化代數運算[A];中華教育理論與實踐科研論文成果選編(第3卷)[C];2010年

相關重要報紙文章 前1條

1 本報駐敘利亞記者 焦翔;戰(zhàn)爭中,,已無世外桃源[N];人民日報;2013年

相關碩士學位論文 前2條

1 范云亮;韋達高次方程數值解研究[D];西北大學;2016年

2 王雪茹;韋達對倍角三角形的研究[D];西北大學;2015年



本文編號:2373543

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2373543.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶f1505***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com