Eichler變換關(guān)系及其應(yīng)用
發(fā)布時(shí)間:2018-11-27 17:18
【摘要】:設(shè)k是一個(gè)正的奇數(shù),L是定義在有理數(shù)域上的k:維正定二次型空間中的一個(gè)格,NL是L的level,M(L)是由genL中不同等價(jià)類對(duì)應(yīng)的θ級(jí)數(shù)生成的線性空間.我們證明了,對(duì)于整除NL的奇素?cái)?shù)p,如果Lp = Lp,1NLp,2,其中Lp,1是模的,Lp,2是(p)-模的,并且QpLp,2是非迷向的,則M(L;p):= M(L)+Tp2.M(L)在Hecke算子Tp2的作用下不變.如果L2同構(gòu)于以下三種情況之一:(?),或者(?),或者(?),其中ε ∈Z2x,k:=k-1/2,則M(L2;2):= T22.M(L)+ T222.M(L)在Hecke算子T22的作用下不變·我們還得到了Hecke算子在尖空間中的一些不變子空間.設(shè)f是一個(gè)正定的整的三元二次型,它對(duì)應(yīng)的θ級(jí)數(shù)是θ(z;f)= ∑n=0∞=a(n;f)qn.固定任何一個(gè)滿足a(t;f)≠ 0的無平方因子的正整數(shù)t,定義p(n;t,f):= a(tn2;f)/a(t;f)·當(dāng)f =x12 + x22+ x32且t = 1時(shí),Hurwitz證明了p(n;t,f)是積性的并給出了表達(dá)式.Cooper和Lam證明了四個(gè)類似的公式,并給出了對(duì)某些其他情形的猜想.用我們得到的結(jié)果,我們可以對(duì)很多情形驗(yàn)證p(n;t,f)的積性.Cooper和Lam的猜想中的情形被全部解決.設(shè)f是一個(gè)正定的整的三元二次型,Nf是f的level.設(shè)gen(f)中恰有兩個(gè)等價(jià)類,用g表示另一個(gè)等價(jià)類的代表元.進(jìn)一步假設(shè)spn(f)=spn(g),我們證明,如果(M,Nf= 1是局部可表的有平方因子的正整數(shù),則它能被f表示.Ono和Soundararajan的關(guān)于f = x12+ x22+ 10x32的結(jié)果,裴定一的關(guān)于f = x12+ 7x22+ 7x32的結(jié)果和Kelley的關(guān)于f =x12=x22+7x32i的結(jié)果都是我們上述定理的推論.
[Abstract]:Let k be a positive odd number, L be a lattice defined in the space of K: dimensional positive definite quadratic form on the rational number field, and NL be the level,M (L) of L is a linear space generated by 胃 series corresponding to different equivalent classes in genL. We prove that for the odd prime number p of divisible NL, if Lp = Lp,1N Lp,2, where Lp,1 is module, Lp,2 is (p) -module, and QpLp,2 is nonisotropic, then M (L; P): = M (L) Tp2.M (L) is invariant under the action of Hecke operator Tp2. If L _ 2 is isomorphic to one of the following three conditions: (?), or (?), where 蔚 鈭,
本文編號(hào):2361528
[Abstract]:Let k be a positive odd number, L be a lattice defined in the space of K: dimensional positive definite quadratic form on the rational number field, and NL be the level,M (L) of L is a linear space generated by 胃 series corresponding to different equivalent classes in genL. We prove that for the odd prime number p of divisible NL, if Lp = Lp,1N Lp,2, where Lp,1 is module, Lp,2 is (p) -module, and QpLp,2 is nonisotropic, then M (L; P): = M (L) Tp2.M (L) is invariant under the action of Hecke operator Tp2. If L _ 2 is isomorphic to one of the following three conditions: (?), or (?), where 蔚 鈭,
本文編號(hào):2361528
本文鏈接:http://sikaile.net/kejilunwen/yysx/2361528.html
最近更新
教材專著