三維Korteweg型非齊次不可壓流在Slip邊界條件下的Capillarity-Viscosity消失極限
發(fā)布時(shí)間:2018-11-24 11:22
【摘要】:本文研究的是在平坦區(qū)域里,三維Korteweg型非齊次不可壓流在slip邊界條件下可解性,正則性和capillarity-viscosity系數(shù)的消失極限。為解決capillarity-viscosity 系數(shù)的消失極限問題,我們?cè)趨^(qū)域內(nèi)添加初始密度邊界條件 %絇0·n = 0.證明了當(dāng)粘性系數(shù)和毛細(xì)血管系數(shù)趨向于零時(shí),Korteweg型非齊次不可壓流的解收斂到對(duì)應(yīng)的具有相同初始條件的理想非齊次不可壓Euler系統(tǒng)的解,并得到了一個(gè)收斂率結(jié)果。
[Abstract]:In this paper, we study the solvability, regularity and the vanishing limit of capillarity-viscosity coefficients for three-dimensional inhomogeneous incompressible flows of Korteweg type under slip boundary conditions in a flat region. In order to solve the problem of vanishing limit of capillarity-viscosity coefficient, we add the initial density boundary condition% 0 n = 0 in the region. It is proved that when the viscosity coefficient and capillary coefficient tend to 00:00, the solution of Korteweg inhomogeneous incompressible flow converges to the solution of the ideal inhomogeneous incompressible Euler system with the same initial conditions, and a convergence rate result is obtained.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175
本文編號(hào):2353509
[Abstract]:In this paper, we study the solvability, regularity and the vanishing limit of capillarity-viscosity coefficients for three-dimensional inhomogeneous incompressible flows of Korteweg type under slip boundary conditions in a flat region. In order to solve the problem of vanishing limit of capillarity-viscosity coefficient, we add the initial density boundary condition% 0 n = 0 in the region. It is proved that when the viscosity coefficient and capillary coefficient tend to 00:00, the solution of Korteweg inhomogeneous incompressible flow converges to the solution of the ideal inhomogeneous incompressible Euler system with the same initial conditions, and a convergence rate result is obtained.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 ;Remarks on Vanishing Viscosity Limits for the 3D Navier-Stokes Equations with a Slip Boundary Condition[J];Chinese Annals of Mathematics(Series B);2011年03期
2 譚忠;王焰金;;STRONG SOLUTIONS FOR THE INCOMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE[J];Acta Mathematica Scientia;2010年03期
,本文編號(hào):2353509
本文鏈接:http://sikaile.net/kejilunwen/yysx/2353509.html
最近更新
教材專著