雙解析函數(shù)及Schwarz-Pick不等式若干問題的研究
[Abstract]:Complex function is developed in the study of electricity, hydrodynamics, aerodynamics, theoretical physics and thermodynamics. Other branches of mathematics are closely related to the theory of complex function. For example, the essence of elementary functions can only be fully revealed in complex functions. Complex function is widely used. Complex function plays a key role in the study of mechanics, engineering mechanics and physics. The main content of this paper is divided into four sections. The first section introduces the background, development and research status of bianalytic function theory. Secondly, the development of Schwarz-Pick inequality and n-order derivative estimator of bounded analytic zero function is introduced. Finally, the content and significance of this paper are expounded. In the second section, we study the winding number theorem of bianalytic functions and its corollary. In this section, we first introduce some related concepts and properties, then we introduce the properties of bianalytic functions, compare the winding number theorems of analytic functions, and obtain the winding number theorems of bianalytic functions. Finally, three corollaries of the twin-analytic function winding number theorem are given. In the third section, we study the Schwarz-Pick inequality under the hyperbolic derivative of the two moving points. In this section, we first construct two analytic mappings and prove that the analytic mappings conform to the Schwarz-Pick condition. Secondly, the stronger Schwarz-Pick inequality under the hyperbolic derivative is given, and finally, the stronger Schwarz-Pick inequality under the hyperbolic derivative is proved. In the fourth section, the problem of n-order derivative estimation of bounded zero functions is studied. In this section, a more accurate estimate of n-order derivative is obtained based on the existing n-order derivative estimators. Secondly, the accuracy of the n-order derivative estimator obtained in this paper is compared with the existing results, which proves the accuracy of the estimator in this paper.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O174.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡琳;曾招云;;雙解析函數(shù)Schwarz問題的2種新解法[J];南昌大學(xué)學(xué)報(bào)(工科版);2012年04期
2 朱景文;劉詩煥;;雙解析函數(shù)的一點(diǎn)注記[J];井岡山大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年05期
3 張敏;苑文法;;雙曲度量下導(dǎo)數(shù)的Schwarz-Pick不等式(英文)[J];西安文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2011年02期
4 任新安;;從調(diào)和函數(shù)看解析函數(shù)的性質(zhì)[J];數(shù)學(xué)教學(xué)研究;2010年07期
5 戴紹虞;潘一飛;;有界解析函數(shù)的n階導(dǎo)數(shù)估計(jì)[J];數(shù)學(xué)雜志;2010年02期
6 馮春強(qiáng);徐裕生;劉勇;苑文法;;有界函數(shù)的導(dǎo)數(shù)(英文)[J];紡織高校基礎(chǔ)科學(xué)學(xué)報(bào);2007年02期
7 林蓉;雙解析函數(shù)的傅里葉級數(shù)[J];三明高等?茖W(xué)校學(xué)報(bào);2004年02期
8 王明華;雙解析函數(shù)的Riemann邊值逆問題(英文)[J];四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年02期
9 侯光仁;雙解析函數(shù)的幾個問題[J];延安大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年04期
10 曾岳生;有界區(qū)域上雙解析函數(shù)的積分表示[J];懷化師專學(xué)報(bào);2002年02期
相關(guān)碩士學(xué)位論文 前3條
1 傅玉狀;解析函數(shù)與雙解析函數(shù)的相關(guān)問題研究[D];西安建筑科技大學(xué);2015年
2 李曉焱;雙解析函數(shù)與解析函數(shù)一些問題的研究[D];西安建筑科技大學(xué);2014年
3 苑文法;有界正則函數(shù)導(dǎo)數(shù)及系數(shù)估計(jì)[D];西北工業(yè)大學(xué);2002年
,本文編號:2350669
本文鏈接:http://sikaile.net/kejilunwen/yysx/2350669.html