極大值方程的數(shù)值算法及其應(yīng)用研究
[Abstract]:Maxima equation problem is a very important problem in non-smooth equation problem. It is often used to solve nonlinear complementarity, variational inequality and engineering mechanics, and is widely used in image storage. Study on stochastic equilibrium and optimal control. In this paper, the algorithm and its application of the problem of maximum equation are studied. In the first chapter, we briefly introduce the knowledge about the problem of the maximum equation, including the origin and development of the problem, and introduce the application of the maximum equation. In the second chapter, a parameter combination Newton method is given to solve the maximum value equation problem. This method is mainly based on a new differential form. Under general assumptions, the local superlinear convergence results of the algorithm are proved. Finally, relevant numerical experiments are given to show the effectiveness of the algorithm. In chapter 3, an improved parameter combination Newton method for solving the problem of maximum equation is given, which overcomes the limitation of matrix kV nonsingularity in the algorithm, proves the local superlinear convergence of the algorithm, and gives the relevant numerical experiments. In chapter 4, a class of generalized complementarity problem is transformed into a maximum value equation problem, and it is solved by using the given parameter combination Newton method.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O241.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 朱紅焰;岳靖;鞏成艷;;非線(xiàn)性互補(bǔ)問(wèn)題的光滑算法[J];長(zhǎng)春理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年05期
2 宋林森;高巖;;極大值函數(shù)Clarke廣義Jacobi計(jì)算的新算法[J];上海理工大學(xué)學(xué)報(bào);2016年05期
3 朱紅焰;鞏成艷;岳靖;;非線(xiàn)性互補(bǔ)問(wèn)題的光滑牛頓算法[J];阜陽(yáng)師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2016年03期
4 周光輝;張從軍;張成虎;王月虎;;非線(xiàn)性互補(bǔ)問(wèn)題的兩種數(shù)值解法[J];數(shù)學(xué)雜志;2016年04期
5 許小芳;馬昌鳳;;基于一個(gè)新的NCP函數(shù)的光滑牛頓法求解非線(xiàn)性互補(bǔ)問(wèn)題[J];數(shù)學(xué)雜志;2011年04期
6 杜守強(qiáng);高巖;;求解垂直互補(bǔ)問(wèn)題的參數(shù)牛頓法(英文)[J];運(yùn)籌學(xué)學(xué)報(bào);2009年01期
7 ;Nonsmooth Equations of K-T Systems for a Constrained Minimax Problem[J];Journal of Systems Engineering and Electronics;2003年02期
8 常永奎,劉三陽(yáng);非線(xiàn)性互補(bǔ)問(wèn)題的一種不可行非內(nèi)點(diǎn)連續(xù)算法[J];數(shù)學(xué)研究;2003年01期
,本文編號(hào):2347220
本文鏈接:http://sikaile.net/kejilunwen/yysx/2347220.html