廣義指數(shù)O-U過程下的歐式復(fù)雜任選期權(quán)定價(jià)
[Abstract]:As a kind of financial derivative, option plays a very important role in financial market. In recent years, due to the rapid development of the financial market, there are many new options, these options and standard options in many ways have changed, known as strange options. An optional option is one of the exotic options, which allows the holder of an option to decide whether the option is a call option or a put option at a time earlier than the expiration date of the option, after which time it is a standard European option. Optional options can effectively guard against risk and reduce the investment cost of the holder. Therefore, how to make reasonable and effective pricing of optional options has become a hot topic. This article mainly carries on the pricing to the complex optional option. First of all, assume that the stock price service from the continuous generalized index O-U process model, risk-free interest rate and the expected rate of return of stock prices, volatility is a function of time, By means of martingale method and actuarial method, the analytical solutions of the price of complex optional options at any time t are given respectively. However, in the actual financial market, the stock price will suddenly jump, continuous process can not accurately describe the volatility of stock prices. Therefore, this paper assumes the generalized index O-U process model of stock price from jump diffusion to describe the actual situation of stock price fluctuation more accurately. Then the analytical solution of the price of complex optional options at any time t is given by using martingale method and actuarial method respectively.
【學(xué)位授予單位】:南京師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F224;F830.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱霞;葛翔宇;;股票價(jià)格服從指數(shù)O-U跳擴(kuò)散過程的期權(quán)定價(jià)[J];統(tǒng)計(jì)與決策;2014年03期
2 鄧國和;;Heston模型的歐式任選期權(quán)定價(jià)與對沖策略[J];廣西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期
3 牛淑敏;徐云;;分?jǐn)?shù)跳-擴(kuò)散運(yùn)動下歐式復(fù)雜任選期權(quán)定價(jià)[J];數(shù)學(xué)理論與應(yīng)用;2012年02期
4 張凱凡;;鞅方法在股指期權(quán)定價(jià)中的應(yīng)用[J];湖北工業(yè)大學(xué)學(xué)報(bào);2011年05期
5 王海葉;;參數(shù)隨時(shí)間變化的任選期權(quán)的定價(jià)公式[J];襄樊學(xué)院學(xué)報(bào);2011年05期
6 呂潔;;鞅方法在期權(quán)定價(jià)中的應(yīng)用[J];財(cái)經(jīng)界(學(xué)術(shù)版);2010年08期
7 王獻(xiàn)東;杜雪樵;;跳擴(kuò)散模型下的復(fù)合期權(quán)定價(jià)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2009年14期
8 李美蓉;;隨機(jī)利率下股票價(jià)格服從指數(shù)O-U過程的期權(quán)定價(jià)[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年04期
9 黃國安;鄧國和;霍海峰;;跳躍-擴(kuò)散過程下歐式任選期權(quán)的定價(jià)[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期
10 畢學(xué)慧;杜雪樵;;后定選擇權(quán)的保險(xiǎn)精算定價(jià)[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年05期
,本文編號:2340726
本文鏈接:http://sikaile.net/kejilunwen/yysx/2340726.html