復(fù)平面上解析Banach空間的擬不變子空間
發(fā)布時(shí)間:2018-11-11 11:53
【摘要】:討論復(fù)平面上解析Banach空間具有任意指標(biāo)的擬不變子空間的存在性問(wèn)題.首先給出一類復(fù)平面上解析Banach空間存在任意指標(biāo)擬不變子空間的判定定理.作為應(yīng)用,證明了Fock型空間F~p(C)={f∈Hol(C):1/π∫_C|f(z)|~pe~(-|z|~2)dA(z)+∞,1≤p+∞}與Hilbert空間H={f∈Hol(C):1/π∫_C|f(z)|~2e~(-|z|)dA(z)+∞}具有任意指標(biāo)的擬不變子空間.
[Abstract]:The existence of quasi-invariant subspaces with arbitrary indices in analytic Banach spaces on complex plane is discussed. In this paper, we first give the theorem of the existence of any index quasi invariant subspace in a class of analytic Banach spaces on the complex plane. As an application, it is proved that the Fock type space FRP (C) = {f 鈭,
本文編號(hào):2324765
[Abstract]:The existence of quasi-invariant subspaces with arbitrary indices in analytic Banach spaces on complex plane is discussed. In this paper, we first give the theorem of the existence of any index quasi invariant subspace in a class of analytic Banach spaces on the complex plane. As an application, it is proved that the Fock type space FRP (C) = {f 鈭,
本文編號(hào):2324765
本文鏈接:http://sikaile.net/kejilunwen/yysx/2324765.html
最近更新
教材專著