局部凸空間中幾種凸性和光滑性的探討
發(fā)布時間:2018-11-07 15:29
【摘要】:1932年,S.Banach在其著作《線性算子理論》中首次定義了Banach空間,經(jīng)過人們幾十年時間的不斷深入探討、發(fā)展和完善,Banach空間理論已經(jīng)取得了相對比較完善的理論成果.局部凸空間作為Banach空間的直接推廣,在近四十多年的時間里,其空間理論引起了人們的廣泛關(guān)注,同時也取得了比較理想的理論成果,而且這些結(jié)果都有著較好的實(shí)際應(yīng)用價值.例如,局部凸空間的drop性質(zhì)、Asplund性質(zhì)以及Ekeland變分原理等.盡管現(xiàn)在有部分學(xué)者在探討局部p-凸空間(其中0p≤1),但是由于其空間的非線性結(jié)構(gòu).就目前而言,在局部p-凸空間里引入和研究其凸性(光滑性)以及它們之間的對偶關(guān)系還存在著一定的困難.本文在已有的關(guān)于Banach空間和局部凸空間的理論成果中,將Banach空間中的一些凸性和光滑性嘗試推廣到局部凸空間中去,討論它們的若干特征、性質(zhì)以及凸性和光滑性之間的相互關(guān)系.得到了一些與Banach空間幾何理論相對平行的結(jié)果.本文共分為四章.第一章:基本知識.第二章:本章給出局部凸空間中k-極凸、k-極光滑空間的概念及其空間特征刻畫,并且在P-自反的條件下,研究它們的對偶關(guān)系.第三章:本章給出局部凸空間中k-非常極凸和k-非常極光滑空間的定義及其特征刻畫,并且在P-自反的意義下,討論它們的對偶關(guān)系.第四章:本章給出局部凸空間中中點(diǎn)局部k-非常極凸和中點(diǎn)局部k-非常極光滑空間的概念及其空間刻畫,并且在P-自反的條件下,討論它們的對偶關(guān)系.
[Abstract]:In 1932, S.Banach defined Banach space for the first time in his book "Linear operator Theory". After decades of deep discussion, development and perfection of Banach space theory, Banach space theory has obtained relatively perfect theoretical results. As a direct generalization of Banach spaces, the space theory of locally convex spaces has attracted wide attention in the past forty years, and has also achieved a more ideal theoretical result. And these results have good practical application value. For example, the drop property, Asplund property and Ekeland variational principle of locally convex space. Although some scholars are now studying local p-convex spaces (where 0p 鈮,
本文編號:2316784
[Abstract]:In 1932, S.Banach defined Banach space for the first time in his book "Linear operator Theory". After decades of deep discussion, development and perfection of Banach space theory, Banach space theory has obtained relatively perfect theoretical results. As a direct generalization of Banach spaces, the space theory of locally convex spaces has attracted wide attention in the past forty years, and has also achieved a more ideal theoretical result. And these results have good practical application value. For example, the drop property, Asplund property and Ekeland variational principle of locally convex space. Although some scholars are now studying local p-convex spaces (where 0p 鈮,
本文編號:2316784
本文鏈接:http://sikaile.net/kejilunwen/yysx/2316784.html
最近更新
教材專著