數(shù)值求積公式在平均框架下的誤差分析
發(fā)布時(shí)間:2018-11-06 18:22
【摘要】:本文得到了復(fù)化Simpson公式,Gauss-Legendre求積公式以及基于第二類Chebyshev多項(xiàng)式極值點(diǎn)的數(shù)值求積公式在r-重積分Wiener空間下的平均誤差.對(duì)于復(fù)化Simpson公式我們證明了其飽和階為3.對(duì)于Gauss-Legendre求積公式得到它是一種對(duì)具有不同光滑性的函數(shù)都有高度準(zhǔn)確性的通用算子.我們給出了基于第二類Chebyshev多項(xiàng)式極值點(diǎn)的數(shù)值求積公式,并在r=0,1,2時(shí)給出了逼近誤差的強(qiáng)漸近階.
[Abstract]:In this paper, we obtain the average error of complex Simpson formula, Gauss-Legendre quadrature formula and the numerical quadrature formula based on the extreme point of the second Chebyshev polynomial in the r-multiple integral Wiener space. For the complex Simpson formula, we prove that its saturation order is 3. For the Gauss-Legendre quadrature formula, it is obtained that it is a universal operator with high accuracy for functions with different smoothness. We give a numerical quadrature formula based on the extremum point of the second kind of Chebyshev polynomials, and give the strong asymptotic order of the approximation error at r ~ (0 ~ 0 ~ 1, 2).
【學(xué)位授予單位】:天津師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:O172.2
本文編號(hào):2315099
[Abstract]:In this paper, we obtain the average error of complex Simpson formula, Gauss-Legendre quadrature formula and the numerical quadrature formula based on the extreme point of the second Chebyshev polynomial in the r-multiple integral Wiener space. For the complex Simpson formula, we prove that its saturation order is 3. For the Gauss-Legendre quadrature formula, it is obtained that it is a universal operator with high accuracy for functions with different smoothness. We give a numerical quadrature formula based on the extremum point of the second kind of Chebyshev polynomials, and give the strong asymptotic order of the approximation error at r ~ (0 ~ 0 ~ 1, 2).
【學(xué)位授予單位】:天津師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:O172.2
【共引文獻(xiàn)】
相關(guān)期刊論文 前4條
1 ;Entropy number and non-linear approximations on multivariate Besov space by manifolds of finite pseudo-dimension[J];Progress in Natural Science;2006年03期
2 王晶晶;錢(qián)李新;;加權(quán)Besov嵌入中的線性隨機(jī)寬度[J];浙江師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年02期
3 王培;徐艷艷;蔡斌畏;塔實(shí)甫拉提;;無(wú)限維空間的線性逼近特征[J];新疆師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年02期
4 王培;徐艷艷;蔡斌畏;塔實(shí)甫拉提;;無(wú)限維空間的線性逼近特征[J];新疆師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年03期
,本文編號(hào):2315099
本文鏈接:http://sikaile.net/kejilunwen/yysx/2315099.html
最近更新
教材專著