M相依隨機(jī)變量的中偏差
發(fā)布時(shí)間:2018-11-06 08:48
【摘要】:在本文中,我們主要研究M相依隨機(jī)變量序列,并對(duì)其中偏差原理給出了證明。第一章,我們給出了引言,介紹了m相依隨機(jī)變量序列及其研究背景,大偏差中偏差原理及其研究背景,并簡(jiǎn)要介紹了我們所要研究的主要的問題。在第二部分,我們給出了我們得到的主要定理,即在改進(jìn)條件下,M相依隨機(jī)變量序列的中偏差,并簡(jiǎn)要敘述了我們?cè)谧C明主要定理的過程中需要用到的主要引理。第三章,我們將詳細(xì)給出我們對(duì)主要定理和主要引理的證明,證明過程的關(guān)鍵點(diǎn)在于Gartner-Ellis定理的應(yīng)用,以及對(duì)平穩(wěn)過程定義及性質(zhì)的熟悉和基本的概率理論等數(shù)學(xué)基礎(chǔ)的掌握。
[Abstract]:In this paper we mainly study the sequence of M-dependent random variables and prove the principle of deviation. In the first chapter, we give the introduction, introduce the sequence of m-dependent random variables and its research background, the principle of large deviation and its research background, and briefly introduce the main problems we want to study. In the second part, we give the main theorems, that is, the intermediate deviation of the sequence of M dependent random variables under the improved condition, and briefly describe the main lemmas we need to use in the process of proving the main theorems. In the third chapter, we will give our proof of the main theorem and the main Lemma in detail. The key point of the proof process is the application of Gartner-Ellis Theorem. Familiarity with the definition and properties of stationary processes and the mastery of the basic mathematical basis such as probability theory.
【學(xué)位授予單位】:河南師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O211
本文編號(hào):2313797
[Abstract]:In this paper we mainly study the sequence of M-dependent random variables and prove the principle of deviation. In the first chapter, we give the introduction, introduce the sequence of m-dependent random variables and its research background, the principle of large deviation and its research background, and briefly introduce the main problems we want to study. In the second part, we give the main theorems, that is, the intermediate deviation of the sequence of M dependent random variables under the improved condition, and briefly describe the main lemmas we need to use in the process of proving the main theorems. In the third chapter, we will give our proof of the main theorem and the main Lemma in detail. The key point of the proof process is the application of Gartner-Ellis Theorem. Familiarity with the definition and properties of stationary processes and the mastery of the basic mathematical basis such as probability theory.
【學(xué)位授予單位】:河南師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O211
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 ;Strong approximation for ρ-mixing sequences[J];Science China(Mathematics);2012年10期
2 雷慶祝;秦永松;;m-相依樣本下條件密度的經(jīng)驗(yàn)似然置信區(qū)間[J];廣西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年02期
3 高付清;有限相依隨機(jī)過程的Cramér定理[J];湖北大學(xué)學(xué)報(bào)(自然科學(xué)版);1991年03期
4 陳夏;;Banach空間中獨(dú)立隨機(jī)元的中偏差[J];應(yīng)用概率統(tǒng)計(jì);1991年01期
5 邵啟滿;EXPONENTIAL INEQUALITIES FOR DEPENDENT RANDOM VARIABLES[J];Acta Mathematicae Applicatae Sinica(English Series);1990年04期
6 蘇淳;m-相依樣本U-統(tǒng)計(jì)量r-平均收斂速度[J];數(shù)學(xué)雜志;1984年01期
,本文編號(hào):2313797
本文鏈接:http://sikaile.net/kejilunwen/yysx/2313797.html
最近更新
教材專著