基于規(guī)則控制的區(qū)間參數(shù)優(yōu)化方法及應(yīng)用
[Abstract]:The parameter optimization problem of interval concept lattice is different from the traditional parameter optimization problem. The values of interval parameters derived from interval concept lattices directly affect the scale and stability of lattice structures and have an impact on the number and accuracy of classification rules and the efficiency of decision criteria. At present, there is great uncertainty and disadvantage in choosing the interval parameter value subjectively, in view of this design interval parameter optimization model. Firstly, the situation of data explosion will lead to the redundancy of concept nodes in lattice structure, so the reduction of concept lattice should be carried out. Combined with the definition of the nearest neighbor of the object under the formal background, the contraction operator of the interval concept lattice is proposed, and the interval parameter optimization model based on the compression theory is constructed. The interval parameters when the lattice node is least redundant are obtained by adjusting the compression degree. An example is given to verify the validity of the model. Secondly, considering that the change of interval parameters will only change some concept nodes and lattice structures, an updating algorithm for concept lattices is proposed in the previous reconstruction algorithms. Combined with the algorithm of extracting association rules based on interval concept lattice, an interval parameter optimization model based on association rules is proposed. The analysis of an example shows that the number of association rules is moderate and the precision is high when the interval parameter is close to [0.5 ~ 1]. Thirdly, in view of the feature of concept lattice to data classification, a classification rule extraction algorithm based on interval concept lattice is designed. It is found that the number and precision of the classification rules of the concept will change when the interval parameters change. Therefore, an optimal model of interval parameters based on the classification rules is proposed, which can adjust the interval parameters by controlling the number and precision of the rules. An example is given to verify the validity of the model. Finally, from the angle of three decision spaces, the application of interval parameter optimization model based on three-branch decision space is given, and the influence of the change of interval parameters on the decision criteria is discussed through book recommendation cases. The effective values of the interval parameters are further verified, and the approximate agreement is reached.
【學(xué)位授予單位】:華北理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O153.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李明霞;劉保相;張春英;;基于壓縮理論的區(qū)間概念格參數(shù)優(yōu)化模型[J];計(jì)算機(jī)應(yīng)用;2016年11期
2 李明霞;劉保相;王立亞;張春英;;區(qū)間概念格的參數(shù)優(yōu)化模型[J];模式識(shí)別與人工智能;2016年05期
3 王立亞;張春英;劉保相;;帶參數(shù)區(qū)間關(guān)聯(lián)規(guī)則挖掘算法與應(yīng)用[J];計(jì)算機(jī)科學(xué)與探索;2016年11期
4 張茹;張春英;王立亞;劉保相;;區(qū)間概念格的縱向合并算法[J];計(jì)算機(jī)應(yīng)用;2015年11期
5 張春英;王立亞;劉保相;;基于覆蓋的區(qū)間概念格動(dòng)態(tài)壓縮原理與實(shí)現(xiàn)[J];山東大學(xué)學(xué)報(bào)(理學(xué)版);2014年08期
6 賈修一;商琳;;一種求三支決策閾值的模擬退火算法[J];小型微型計(jì)算機(jī)系統(tǒng);2013年11期
7 陳永平;楊思春;;面向?qū)ο蟾拍罡竦膲嚎s[J];計(jì)算機(jī)工程與應(yīng)用;2013年19期
8 劉保相;張春英;;一種新的概念格結(jié)構(gòu)——區(qū)間概念格[J];計(jì)算機(jī)科學(xué);2012年08期
9 陳剛;劉秉權(quán);吳巖;;求三支決策最優(yōu)閾值的新算法[J];計(jì)算機(jī)應(yīng)用;2012年08期
10 魏玲;李強(qiáng);;面向?qū)傩愿拍罡窕诟采w的壓縮[J];電子科技大學(xué)學(xué)報(bào);2012年02期
相關(guān)會(huì)議論文 前1條
1 胡立華;張繼福;張素蘭;;基于概念格的分類規(guī)則提取算法及其應(yīng)用[A];計(jì)算機(jī)技術(shù)與應(yīng)用進(jìn)展——全國(guó)第17屆計(jì)算機(jī)科學(xué)與技術(shù)應(yīng)用(CACIS)學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2006年
相關(guān)碩士學(xué)位論文 前2條
1 李勃;基于概念格的關(guān)聯(lián)規(guī)則挖掘研究[D];山東大學(xué);2006年
2 宛敏田;基于概念格的分類規(guī)則提取研究[D];合肥工業(yè)大學(xué);2003年
,本文編號(hào):2305625
本文鏈接:http://sikaile.net/kejilunwen/yysx/2305625.html