Burgers方程的有限元后驗誤差估計及其應用
[Abstract]:As one of the most basic partial differential equations in fluid mechanics, Burgers equation is a nonlinear partial differential equation which can be solved in some cases. However, the solution of Burgers equation may have poor regularity (shock wave phenomenon) in some local regions, which will make it very difficult to solve numerically. Therefore, the study of efficient numerical methods for Burgers equations is of great theoretical significance and practical value. However, adaptive finite element method based on posteriori error estimation is very useful for solving problems with local singularities. The paper is divided into five chapters. The introduction introduces the research background of adaptive finite element, the research background and significance of Burgers equation, the research status of Burgers equation and so on. In the second chapter, we introduce the inequalities, theorems, Sobolev spaces, mesh division management strategies and so on. In chapter 3, chapter 4, we deal with the Burgers problem with Dirichlet boundary condition based on Cole-hopf transform, then discretize the transformed heat conduction equation in time and space by using the least square finite element method. A posteriori error estimator is constructed for semi-discrete schemes and fully discrete schemes, and then verified by a concrete example. In one dimension we select a large Reynolds number and compare it with the error of uniform mesh. The results show that the adaptive mesh number is smaller and the computational efficiency is improved when the error is similar. In two dimensional case, the adaptive and uniform mesh generation is carried out in different time nodes. The numerical simulation results show that the theory in this paper is correct and the constructed numerical method is feasible. The fifth chapter makes a summary of the full text and prospects for future work.
【學位授予單位】:西安理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O241.82
【參考文獻】
相關期刊論文 前10條
1 周少玲;侯磊;;Oldroyd-B流體的解耦有限元算法[J];中北大學學報(自然科學版);2016年04期
2 魯曉莉;趙書博;黃鵬展;;Burgers方程的級數(shù)解[J];伊犁師范學院學報(自然科學版);2015年02期
3 趙國忠;蔚喜軍;;一類非線性Burgers方程組的基于Hopf-Cole變換的直接間斷Galerkin有限元方法[J];高等學校計算數(shù)學學報;2015年02期
4 孫晨揚;李啟良;楊志剛;;最小二乘有限元法求解非定常應力的Navier-Stokes方程[J];計算物理;2015年01期
5 馬艷春;張寅虎;馮新龍;;二維Burgers方程的RKDG有限元解法[J];工程數(shù)學學報;2013年03期
6 陶莎;楊志剛;江伯南;顧文俊;;最小二乘有限元法和有限體積法在CFD中的應用比較[J];計算機輔助工程;2012年02期
7 謝煥田;;Burgers方程差分解的收斂性與穩(wěn)定性[J];高校應用數(shù)學學報A輯;2012年01期
8 成彬;紀光華;王冬艷;;帶粘性的Burgers方程的自適應有限元算法[J];微計算機信息;2010年34期
9 董會;梅立泉;周忠志;;線彈性平板問題的兩步最小二乘法有限元[J];裝備制造技術;2010年08期
10 田強;趙國忠;;Burgers方程的指數(shù)型差分格式[J];內(nèi)蒙古大學學報(自然科學版);2009年01期
相關碩士學位論文 前4條
1 范磊;非線性Burgers方程的高精度數(shù)值解法[D];北方工業(yè)大學;2015年
2 胡瑜;Burgers方程的初邊值問題的多重尺度分析[D];北京化工大學;2012年
3 馬艷春;二維Burgers方程的間斷Galerkin有限元方法[D];新疆大學;2011年
4 陳海峰;基于Hopf-Cole變換Burgers方程的有限元方法研究[D];內(nèi)蒙古大學;2011年
,本文編號:2298930
本文鏈接:http://sikaile.net/kejilunwen/yysx/2298930.html