天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數(shù)學論文 >

基于改進隱馬爾科夫模型的人體步態(tài)自適應識別

發(fā)布時間:2018-10-29 18:00
【摘要】:人體步態(tài)識別技術是指利用運動學、信號處理、模式識別等理論去分析處理傳感設備獲得人體運動學、動力學和生理學等步態(tài)信號的技術。它在仿人機器人、人機耦合機器人(外骨骼和假肢等)、醫(yī)學診斷和康復治療、運動分析、身份識別等領域得到了廣泛的應用。步態(tài)信號具有準周期性,步態(tài)階段之間的轉換可以看做一條馬爾科夫鏈。這種性質(zhì)使得隱馬爾科夫模型(Hidden Markov Model,HMM)在步態(tài)階段識別中得到了廣泛的應用。但是,隱馬爾科夫模型應用在步態(tài)階段識別中存在兩個不足。一是模型基于統(tǒng)計特征構造駐留時間分布函數(shù),不能很好地描述步態(tài)階段的時間特性;二是模型參數(shù)固定,未針對具體使用場景進行自適應處理。這些不足限制了步態(tài)階段識別的效果。本文使用大腿上的加速度信號進行步態(tài)階段識別。通過對傳統(tǒng)隱馬爾科夫模型的改進和優(yōu)化,提高了模型對步態(tài)階段識別的準確性和對步態(tài)數(shù)據(jù)的適應性。具體工作如下:1,對采集的運動步態(tài)數(shù)據(jù)進行了預處理和特征提取。預處理主要包括去噪和平滑。特征提取主要包括步態(tài)窗口劃分和按窗口提取特征。2,討論了隱馬爾科夫模型原理。分析了其應用于步態(tài)階段識別的不足,并指明了改進方向。3,在隱馬爾科夫模型中引入時間參數(shù),用駐留時間分布函數(shù)來代替自轉移概率,使其能夠更好的描述運動步態(tài)階段。4,針對隱馬爾科夫模型無法適應不同的穿戴者、不同的運動狀態(tài)、不同的運動環(huán)境的缺陷進行改進。使用自適應算法修正模型參數(shù),提高步態(tài)階段識別模型的魯棒性。5,針對自適應過程中參考模型單一的問題進行改進,提出將行為識別與步態(tài)階段自適應識別結合的方法,實現(xiàn)自適應中參考模型的多樣化和自主選擇。我們進行了步態(tài)階段識別的對比實驗以驗證以上改進的效果。結果表明針對傳統(tǒng)隱馬爾科夫模型的改進,能夠提升人體步態(tài)階段識別的效果,同時,其對不同人、不同運動模式、不同運動環(huán)境也具備一定的自適應能力。
[Abstract]:Human gait recognition technology refers to the technology that gait signals such as kinematics, signal processing and pattern recognition are obtained by means of kinematics, signal processing, pattern recognition and so on. It has been widely used in the fields of humanoid robot, human-computer coupling robot (exoskeleton and prosthesis), medical diagnosis and rehabilitation, motion analysis, identity recognition and so on. Gait signals are quasi-periodic, and the transition between gait stages can be regarded as a Markov chain. This property makes Hidden Markov Model (Hidden Markov Model,HMM) widely used in gait recognition. However, there are two shortcomings in the application of Hidden Markov Model in gait recognition. One is that the model constructs resident time distribution function based on statistical features, which can not well describe the time characteristics of gait phase; the other is that the model parameters are fixed and the adaptive processing is not carried out for specific use scenes. These deficiencies limit the effect of gait recognition. In this paper, the acceleration signal on the thigh is used to identify the gait stage. By improving and optimizing the traditional hidden Markov model, the accuracy of the model for gait recognition and the adaptability to gait data are improved. The main work is as follows: 1. Preprocessing and feature extraction of gait data are carried out. Pretreatment mainly includes denoising and smoothing. Feature extraction mainly includes gait window partition and feature extraction by window. 2. The principle of hidden Markov model is discussed. The deficiency of its application in gait recognition is analyzed, and the improvement direction is pointed out. 3. Time parameter is introduced into Hidden Markov Model, and the resident time distribution function is used to replace the self-transfer probability. 4, the hidden Markov model can not adapt to different wearer, different motion state, different motion environment defect. 4. The hidden Markov model can not adapt to the defects of different wearer, different motion state and different motion environment. 4. The hidden Markov model can not adapt to different wearer, different motion state and different motion environment. The adaptive algorithm is used to modify the model parameters to improve the robustness of the gait stage recognition model. 5. Aiming at the single problem of reference model in the adaptive process, a new method is proposed to combine the behavior recognition with the gait stage adaptive recognition. The diversity and independent selection of reference models in adaptive system are realized. A comparative experiment of gait stage recognition was carried out to verify the improved results. The results show that the improvement of traditional hidden Markov model can improve the recognition effect of human gait, at the same time, it also has certain adaptive ability to different people, different motion modes and different moving environments.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.4;O211.62

【參考文獻】

相關期刊論文 前8條

1 張向剛;唐海;付常君;石宇亮;;一種基于隱馬爾科夫模型的步態(tài)識別算法[J];計算機科學;2016年07期

2 徐川龍;顧勤龍;姚明海;;一種基于三維加速度傳感器的人體行為識別方法[J];計算機系統(tǒng)應用;2013年06期

3 朱旭東;劉志鏡;;基于主題隱馬爾科夫模型的人體異常行為識別[J];計算機科學;2012年03期

4 石欣;熊慶宇;雷璐寧;;一種基于壓力傳感器的人體運動識別方法研究[J];儀器儀表學報;2010年06期

5 張文祥;張磊;馬銀花;;HMM自適應法在應力變異語音識別系統(tǒng)的應用[J];黑龍江科技學院學報;2007年05期

6 李虎生,劉加,劉潤生;語音識別說話人自適應研究現(xiàn)狀及發(fā)展趨勢[J];電子學報;2003年01期

7 李虎生,楊明杰,劉潤生;漢語數(shù)碼語音識別自適應算法[J];電路與系統(tǒng)學報;1999年02期

8 郭慶,柴海新,吳文虎;隱Markov模型中狀態(tài)停留時間的模型化[J];清華大學學報(自然科學版);1999年05期

相關博士學位論文 前2條

1 薛少飛;DNN-HMM語音識別聲學模型的說話人自適應[D];中國科學技術大學;2015年

2 王堅;語音識別中的說話人自適應研究[D];北京郵電大學;2007年

相關碩士學位論文 前2條

1 邢秀玉;基于加速度傳感器的人體步態(tài)模式分類研究[D];中北大學;2013年

2 趙歡歡;基于隱馬爾可夫模型的說話人轉換研究[D];中國科學技術大學;2009年

,

本文編號:2298392

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2298392.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶0156a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com