軌形Gromov-Witten不變量沿光滑點(diǎn)的加權(quán)漲開(kāi)公式
發(fā)布時(shí)間:2018-10-14 17:27
【摘要】:本文考慮,當(dāng)一個(gè)緊辛軌形群胚(X,ω)沿著光滑點(diǎn)作加權(quán)漲開(kāi)時(shí),它的形如α_1,…,α_m,[pt]_(g,A)~X的軌形Gromov-Witten不變量的變化公式,其中[pt]∈H_(dR)~(2n)(X)是生成元,dimX=2n.我們證明了對(duì)于非零A∈H_2(|X|,Z),α_1,…,α_m,[pt]_(g,A)~X={p~*a_1,...,p~*a_m,1_x_((-1/a_1))_(g_1,pl(A)-e’)~xdimX=4,g≥0,∑((-1)g_1·2)/(2g_1+2)!p~*a_1,...,p~*a_m,1_x_((-1/a_1))_(g_2,pl(A)-e’)~xdimX=6,g≥0,p~*a_1,...,p~*a_m,1_x_((-1/a_1))_(g_1,pl(A)-e’)~xdimX≥8,g=0其中x是X沿一光滑點(diǎn)的權(quán)α=(α_1,…,α_n)的加權(quán)漲開(kāi),且α_1≥α_i,2≤i≤n.
[Abstract]:In this paper, we consider that when a compact symplectic orbital group (X, 蠅) is weighted to open along a smooth point, its shape is like 偽 _ 1, 鈥,
本文編號(hào):2271124
[Abstract]:In this paper, we consider that when a compact symplectic orbital group (X, 蠅) is weighted to open along a smooth point, its shape is like 偽 _ 1, 鈥,
本文編號(hào):2271124
本文鏈接:http://sikaile.net/kejilunwen/yysx/2271124.html
最近更新
教材專著