關(guān)于對偶Orlicz混合均質(zhì)積分的若干不等式
發(fā)布時間:2018-10-12 14:33
【摘要】:本文主要研究了對偶的Orlicz混合均質(zhì)積分.對任意單調(diào)連續(xù)函數(shù)φ,我們引進了對偶的Orlicz徑向和和對偶的Orlicz混合均質(zhì)積分,由此建立起關(guān)于對偶的Orlicz混合均質(zhì)積分的對偶的Orlicz-Minkowski不等式和對偶的Orlicz-Brunn-Minkowski不等式.這些不等式類似于Lp里特殊的情形(包括-∞p0,p = 0,0p1,p=1,和1p+∞).當φ = logt時,這些不等式和公開問題緊密相關(guān),包括log-Minkowski問題和log-Brunn-Minkowski問題.最后,我們還證明了對偶的Orlicz-Minkowski不等式和對偶的Orlicz-Brunn-Minkowski不等式之間的等價性.
[Abstract]:In this paper, we study dual Orlicz mixed homogeneous integrals. For any monotone continuous function 蠁, we introduce dual Orlicz radial and dual Orlicz mixed homogeneous integrals, and establish dual Orlicz-Minkowski inequalities and dual Orlicz-Brunn-Minkowski inequalities for dual Orlicz mixed homogeneous integrals. These inequalities are similar to the special cases in Lp (including-鈭,
本文編號:2266485
[Abstract]:In this paper, we study dual Orlicz mixed homogeneous integrals. For any monotone continuous function 蠁, we introduce dual Orlicz radial and dual Orlicz mixed homogeneous integrals, and establish dual Orlicz-Minkowski inequalities and dual Orlicz-Brunn-Minkowski inequalities for dual Orlicz mixed homogeneous integrals. These inequalities are similar to the special cases in Lp (including-鈭,
本文編號:2266485
本文鏈接:http://sikaile.net/kejilunwen/yysx/2266485.html
最近更新
教材專著