若干運算圖的倍乘賦權(quán)Harary指標(英文)
發(fā)布時間:2018-10-12 07:08
【摘要】:ALIZADEH等近期提出了一個修正的Harary指標,即頂點對的貢獻被賦予其度的乘積.其指標被稱為倍乘賦權(quán)Harary指標,定義為H_M(G)=∑u≠vδ_G(u)δ_G(v)/d_G(u,v),其中,δ_G(u)表示頂點u在圖G中的度,d_G(u,v)表示2個頂點u和v在圖G中的距離.給出了張量積G×K_r,強積G■K_r,圈積G_1oG_2的倍乘賦權(quán)Harary指標值的精確計算公式,這些公式與圖的其他不變量(如倍加賦權(quán)Harary指標、Harary指標、第1類和第2類Zagreb指標、第1類和第2類反Zagreb指標)有關(guān).此外,利用所得結(jié)果計算了開柵欄與閉柵欄的倍乘賦權(quán)Harary指標.
[Abstract]:ALIZADEH et al recently proposed a modified Harary index, that is, the contribution of vertex pairs is given the product of its degree. Its index is called multiplicative weighted Harary index, and it is defined as Harary (G) = 鈭,
本文編號:2265230
[Abstract]:ALIZADEH et al recently proposed a modified Harary index, that is, the contribution of vertex pairs is given the product of its degree. Its index is called multiplicative weighted Harary index, and it is defined as Harary (G) = 鈭,
本文編號:2265230
本文鏈接:http://sikaile.net/kejilunwen/yysx/2265230.html
最近更新
教材專著