基于單變量降維模型和坐標(biāo)旋轉(zhuǎn)的可靠度混合分析方法
[Abstract]:The classical first-order reliability method has the applicability problem to the problem of implicit function and strongly nonlinear function, although the quadratic reliability method can deal with the problem of strong nonlinear function to some extent. However, the theoretical basis and calculation process are quite complex, which is not conducive to practical. In order to overcome the above problems, it is an effective way to combine the process of determining the checking point with the method of response surface. For this reason, this paper first introduces a universal first-order reliability method, in which the Nataf transformation of correlated non-normal random variables is considered, and the unilateral difference method is introduced to solve the problem of implicit function finding partial derivative. According to the gradient value, the coordinate rotation vector is introduced, and the univariate function reduced dimension approximate model is introduced to the rotated function. Thirdly, the function value, gradient value and additional point function value of the checking point are combined. Determine the quadratic polynomial approximation of each component function, and obtain the approximate global function. Then, the importance sampling method is used to calculate the failure probability of the approximate functional function. The accuracy and efficiency of the method are verified by numerical examples and engineering examples respectively. The results show that the proposed method has the characteristics of high accuracy and high efficiency, and it is widely applicable to both explicit and implicit function functions.
【作者單位】: 重慶大學(xué)山地城鎮(zhèn)建設(shè)與新技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室;重慶大學(xué)土木工程學(xué)院;美國加州大學(xué)歐文分校;
【基金】:國家自然科學(xué)基金(51678092,51478064,50908243)
【分類號】:TB114.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李云貴,趙國藩,張保和;廣義隨機(jī)空間內(nèi)的一次可靠度分析方法[J];大連理工大學(xué)學(xué)報;1993年S1期
2 韓明;可靠度的一種新估計方法[J];兵工學(xué)報;2004年01期
3 崔衛(wèi)民,諸德培;用假設(shè)的顯著性檢驗(yàn)保證系列產(chǎn)品的綜合可靠度[J];機(jī)械設(shè)計;1999年05期
4 曹樂平,溫芝元;零件可靠度分配[J];郴州師范高等專科學(xué)校學(xué)報;2002年05期
5 馮添樂;江永豐;;基于支持向量回歸機(jī)的可靠度預(yù)測模型[J];計算機(jī)與數(shù)字工程;2011年02期
6 王丹;葉杭;;一般任意復(fù)雜網(wǎng)絡(luò)的可靠度最優(yōu)布局[J];北方交通大學(xué)學(xué)報;1988年03期
7 段楠,薛會民,潘越;用蒙特卡洛法計算可靠度時模擬次數(shù)的選擇[J];煤礦機(jī)械;2002年03期
8 莫文輝;可靠度分配的模糊方法[J];現(xiàn)代機(jī)械;2002年01期
9 林銀飛,呂泰仁,李宏;框架結(jié)構(gòu)體系的可靠度分析[J];空軍工程大學(xué)學(xué)報(自然科學(xué)版);2001年04期
10 張世義;胡建軍;;基于小子樣的發(fā)動機(jī)/ISG組合系統(tǒng)的可靠度綜合評估[J];機(jī)械設(shè)計與制造;2008年11期
相關(guān)會議論文 前1條
1 蔣友寶;賀藝華;;支持向量機(jī)技術(shù)在可靠度分析中的應(yīng)用[A];第17屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(第Ⅲ冊)[C];2008年
相關(guān)碩士學(xué)位論文 前2條
1 李茗;基于可靠度限制的不完全預(yù)防維護(hù)模型分析[D];蘭州理工大學(xué);2014年
2 翟錫杰;基于RCM理論的時變可靠度維修決策模型的研究[D];東北大學(xué);2013年
,本文編號:2237986
本文鏈接:http://sikaile.net/kejilunwen/yysx/2237986.html