天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數(shù)學論文 >

偽補分配格的同余理想

發(fā)布時間:2018-09-03 10:05
【摘要】:格是序結(jié)構(gòu)和代數(shù)結(jié)構(gòu)的結(jié)合體.從布爾格在命題演算和開關理論中的重要作用可以看出格的重要.近年來由于有序理論在組合數(shù)學、Fuzzy數(shù)學中的廣泛應用,使得格理論逐步發(fā)展成為現(xiàn)代數(shù)學的重要分支之一.偽補是格中補元的延伸,將格中補元滿足的∧、∨兩個運算減為一個運算∧就得到偽補.偽補的重要性在于:(1)有了偽補,原來不存在補元的元素卻存在偽補元,這就擴大了格中元素存在補元的范圍;(2)偽補的引入可提升格代數(shù)結(jié)構(gòu),即在代數(shù)結(jié)構(gòu)上加上偽補可產(chǎn)生新的代數(shù)結(jié)構(gòu).將偽補融入格即成為偽補格,與一般的格有所不同,例如,一般格上的同余關系是對∧,∨具有替換性質(zhì),而偽補格上的同余關系則需要對∧,∨,*都具有替換性質(zhì),介于偽補的重要性,偽補格也成為人們熱議的課題.理想在眾多代數(shù)結(jié)構(gòu)中都占據(jù)著主導地位,偽補格上的理想近年來是人們競相追逐的研究課題.將偽補融入格理想,會衍生出新的理想,同余理想就是其中之一,同余理想是認識偽補格和同余關系的重要工具,例如,以同余理想為載體,人們搞清楚了偽補MS代數(shù)的內(nèi)部結(jié)構(gòu),這為進一步研究偽補代數(shù)提供了理論支持.本文在前人研究的基礎上,對偽補分配格上的同余理想做了進一步的研究,得出一些有意義的結(jié)論.文章介紹了偽補分配格上同余理想的性質(zhì)以及理想成為同余理想的條件,關于特殊的同余理想:O-理想,給出了它的性質(zhì)和具體表示形式,并用自己的方法或改進的方法予以證明.文章主要分為三部分:第一部分:預備知識.介紹了偽補分配格上同余理想的意義、研究現(xiàn)狀及創(chuàng)新點;給出了研究偽補分配格上的同余理想所用到的概念、引理及結(jié)果,其中包括:格、格理想、格同余關系、偽補格、同余理想、O-理想等定義和相關結(jié)論.第二部分:同余理想的性質(zhì).根據(jù)*-同余關系的定義,說明了格同余關系成為*-同余關系的條件,對以同余理想為同余類的最小的*-同余關系,給出了具體表達形式;闡述了偽補分配格上的同余理想的性質(zhì),根據(jù)性質(zhì)得出偽補格中元素所滿足的若干格等式.第三部分:理想成為同余理想條件.介紹了偽補分配格上理想成為同余理想的若干充要條件和等價條件以及理想、素理想和主理想成為同余理想的條件,說明了主理想作為同余理想所具有的性質(zhì);給出了由同余理想與余核濾子相互尋找的方法;針對特殊的同余理想:O-理想,討論了它的性質(zhì)和理想成為O -理想的條件;并給出幾種具體的O -理想.
[Abstract]:Lattice is a combination of ordered structure and algebraic structure. From the important role of Burg in proposition calculus and switch theory, we can see the importance of lattice. In recent years, due to the extensive application of order theory in combinatorial mathematics and fuzzy mathematics, lattice theory has gradually developed into one of the important branches of modern mathematics. Pseudo complement is an extension of complement in lattices. If two operations of a complement satisfying in a lattice are reduced to one operation, a pseudo complement can be obtained. The importance of pseudo complement is as follows: (1) with pseudo complement, the elements that do not have complement have pseudo complement, which expands the scope of complement in lattice. (2) the introduction of pseudo complement can enhance the algebraic structure of lattice. That is to say, adding pseudo complement to algebraic structure can produce new algebraic structure. It is different from the general lattice that the pseudo-complement is merged into the lattice, for example, the congruence relation on the general lattice has the property of substitution for the 位 and the Timov, while the congruence relation on the pseudo-complement lattice needs to have the property of substitution for all the congruences on the pseudo-complement lattice, and the congruence relation on the pseudo-complement lattice needs to have the property of substitution for all of them. Because of the importance of pseudo complement, pseudo complement lattice has become a hot topic. Ideals occupy a dominant position in many algebraic structures. In recent years, ideals on pseudo-complement lattices have been pursued by people. One of them is congruence ideal, which is an important tool for understanding pseudo-complement lattice and congruence relations. For example, congruence ideal is the carrier of congruence ideal. The internal structure of pseudo-complement MS algebras has been clarified, which provides theoretical support for further study of pseudo-complement algebras. On the basis of previous studies, this paper makes a further study of congruence ideals on pseudo-complementary distributive lattices, and draws some meaningful conclusions. In this paper, we introduce the properties of congruence ideals on pseudo-complementary distributive lattices and the conditions under which ideals become congruence ideals. And with their own method or improved method to prove. The article is divided into three parts: the first part: preparatory knowledge. This paper introduces the significance of congruence ideals on pseudo-complementary distributive lattices, the present research situation and innovation points, and gives the concepts, Lemma and results used to study congruence ideals on pseudo-complementary distributive lattices, including: lattice, lattice ideals, lattice congruence relations, pseudo-complement lattices. The definition and related conclusions of congruence ideals. Part two: the properties of congruence ideals. According to the definition of the lattice-congruence relation, this paper explains the condition that the lattice congruence relation becomes the lattice-congruence relation, and gives the concrete expression form of the minimal congruence relation in which the ideal of congruence is regarded as the class of congruence. The properties of congruence ideals on pseudo-complement distributive lattices are expounded. According to the properties, some lattice equations satisfied by elements in pseudo-complement lattices are obtained. The third part: ideal becomes congruence ideal condition. This paper introduces some necessary and sufficient conditions for an ideal on a pseudo-complementary distributive lattice to be a congruence ideal and some equivalent conditions, as well as the conditions for a prime ideal and a principal ideal to be a congruence ideal, and explains the properties of the principal ideal as a congruence ideal. This paper gives the method of searching by congruence ideal and conuclear filter, discusses its properties and the conditions under which the ideal becomes O-ideal for the special congruence ideal: O- ideal, and gives several concrete O-ideals.
【學位授予單位】:內(nèi)蒙古工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O153.1

【參考文獻】

相關期刊論文 前10條

1 趙秀蘭;陳麗娟;;雙重Stone代數(shù)的核理想[J];四川理工學院學報(自然科學版);2017年01期

2 趙秀蘭;史西專;;半偽補MS-代數(shù)的理想及同余關系[J];模糊系統(tǒng)與數(shù)學;2016年02期

3 趙秀蘭;劉潔;;偽補MS-代數(shù)的核理想與同余關系[J];江西師范大學學報(自然科學版);2014年06期

4 祝禎禎;盧濤;;偽補格上的弱Way-below關系[J];洛陽師范學院學報;2014年05期

5 謝敏;羅從文;;對稱擴張偽補分配格的同余關系[J];模糊系統(tǒng)與數(shù)學;2013年06期

6 王雷波;方捷;;幾乎偽補格的核理想與W-理想[J];模糊系統(tǒng)與數(shù)學;2012年01期

7 王尊全;;PMS-代數(shù)的同余理想[J];華中師范大學學報(自然科學版);2006年01期

8 黎愛平;分配P-代數(shù)的O-理想與核理想[J];上饒師范學院學報(自然科學版);2005年03期

9 羅從文;偽補MS代數(shù)的主同余關系[J];應用數(shù)學;2004年04期

10 王尊全;偽補分配格的同余理想與同余關系[J];純粹數(shù)學與應用數(shù)學;2001年04期

相關碩士學位論文 前3條

1 鞏博儒;格及其在密碼學中的應用[D];復旦大學;2013年

2 王釗;擬偽補Ockham代數(shù)的同余與核理想[D];廣東技術師范學院;2013年

3 楊婷;擬偽補MS-代數(shù)[D];廣東技術師范學院;2012年



本文編號:2219657

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2219657.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶babb9***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com