高精度緊致格式在水沙運(yùn)移數(shù)值模擬中的應(yīng)用
[Abstract]:Convection-diffusion equation is a kind of motion equation which can be used to describe many physical phenomena such as river pollution, air pollution, pollutant concentration, fluid flow and heat conduction. There are many methods for solving such equations, such as finite element method, finite difference method, finite volume method and so on. One of the most common numerical methods is the finite difference method. Because it is easy to construct a compact scheme with high accuracy by using fewer mesh points, the difference scheme is constructed in the case of uniform mesh and non-uniform mesh respectively, and the applicability and accuracy of the scheme are verified. Especially in the large gradient, boundary layer and other problems show some advantages. In this paper, the problem of convection-diffusion equation is analyzed. Firstly, the compact difference scheme with high precision is introduced. After introducing the mesh generation function, the scheme is constructed under uniform and non-uniform meshes, respectively. The applicability and accuracy of the scheme are verified by numerical examples. Secondly, the high precision compact scheme is reconstructed based on the Pade' approximation Richardson extrapolation method, which not only obtains higher calculation accuracy, but also the boundary conditions are easy to deal with. The stability and accuracy of the calculation results are also guaranteed, and the computational complexity is saved. Finally, the high precision compact difference scheme is applied to the numerical simulation of water and sediment transport. In order to carry on the numerical simulation, this paper only selects the Ningxia Yellow River Daliushu River in recent years to carry on the comparison analysis with it, thus verifies the practicability and the accuracy of the method.
【學(xué)位授予單位】:北方民族大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O241.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 景何仿;李義天;李春光;;Numerical study of the flow in the Yellow River with non-monotonous banks[J];Journal of Hydrodynamics;2016年01期
2 王慧蓉;;求解對(duì)流擴(kuò)散方程的緊致差分方法[J];山西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年03期
3 王慧蓉;;求解對(duì)流擴(kuò)散方程的緊致pade'逼近差分格式[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2015年10期
4 尹治丹;陳建華;葛永斌;;求解二維擴(kuò)散方程的一種高精度緊致差分格式[J];四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年03期
5 黃雪芳;郭銳;葛永斌;;一維非定常對(duì)流擴(kuò)散方程非均勻網(wǎng)格上的高精度緊致差分格式[J];工程數(shù)學(xué)學(xué)報(bào);2014年03期
6 田芳;;非均勻網(wǎng)格上三維對(duì)流擴(kuò)散方程高精度緊致差分方法[J];寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
7 肖建英;劉小華;李永濤;;非定常對(duì)流擴(kuò)散方程的高階差分格式[J];西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期
8 魏劍英;;二維定常對(duì)流擴(kuò)散方程的一種高精度緊致差分方法[J];重慶理工大學(xué)學(xué)報(bào)(自然科學(xué));2012年02期
9 王峰峰;王彩華;齊海濤;;二維對(duì)流擴(kuò)散方程的緊致差分格式[J];天津師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年01期
10 ;Numerical research on flow and thermal transport in cooling pool of electrical power station using three depth-averaged turbulence models[J];Water Science and Engineering;2009年03期
,本文編號(hào):2217870
本文鏈接:http://sikaile.net/kejilunwen/yysx/2217870.html