快遞需求量組合預測模型構(gòu)建及實證研究
[Abstract]:With the world trade and domestic trade activities becoming more and more lively, express delivery plays an increasingly important role in social and economic activities, driving the development of other economic industries, so the government attaches great importance to it. The government has issued express industry guidance and planning to guide the steady development of China's express industry. Express demand forecast is the basis of express delivery industry planning. In view of this, this paper regards express demand forecast as research object, aiming at establishing suitable express demand forecasting model, which has certain practical value. According to the related documents of express delivery industry and the actual situation of our country, this paper analyzes the characteristics of express demand in China, the influencing factors of express demand and the forecasting steps of express demand. Considering the availability of data, this paper selects 8 indexes related to the demand of express delivery, such as the total retail volume of consumer goods in GDP, postal business volume, the number of Internet users and the volume of goods turnover, and constructs the prediction index system. The grey correlation degree between the demand for express delivery and the eight indexes is quantitatively analyzed by the grey correlation method, and the conclusion is drawn that the demand for express delivery in China has been most affected by the total import and export volume and the volume of postal business since 2006. In order to achieve the purpose of easy operation, high accuracy and strong applicability, the grey prediction model, the trend extrapolation model and the multivariate linear regression model in the time series model, the trend extrapolation method and the causality model are selected from the existing prediction methods. Combined with the principle of Shapley value allocation, the combined prediction model is established. Finally, take Sichuan express demand as the research object, collect the relevant independent variables statistical index of Sichuan province from 2006 to 2016, forecast and verify the Sichuan express demand. The result shows that the combined forecasting model is suitable for express delivery demand forecast. Accuracy is high, meet actual demand, but can only be used in the short and medium term forecast; Sichuan express demand will continue to grow in the next few years.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F224;F259.2
【參考文獻】
相關(guān)期刊論文 前10條
1 商豐瑞;張靜;;基于SARIMA模型的我國快遞業(yè)務量預測[J];現(xiàn)代經(jīng)濟信息;2016年20期
2 文靜;;基于因子分析法的安徽省主要城市快遞業(yè)市場容量比較研究[J];湖北經(jīng)濟學院學報(人文社會科學版);2016年02期
3 張宛姝;于萬堂;;快遞業(yè)與電子商務的產(chǎn)業(yè)關(guān)聯(lián)關(guān)系實證分析[J];中國管理信息化;2016年03期
4 許良;呂岳林;張金芳;;秦皇島市快遞業(yè)與區(qū)域經(jīng)濟相互作用模型研究[J];物流科技;2015年11期
5 王蓮花;宋芳;;基于灰色關(guān)聯(lián)分析的山東省快遞業(yè)影響因素研究[J];物流技術(shù);2015年13期
6 郭福利;張春生;;快遞業(yè)研究綜述[J];物流工程與管理;2015年06期
7 張光明;王路;;快遞服務網(wǎng)點選址模型研究[J];江蘇科技大學學報(自然科學版);2015年02期
8 梁會民;陳文月;殷潔;丁亞晨;劉鑫;;基于網(wǎng)絡分析的快遞網(wǎng)點布局優(yōu)化研究[J];物流科技;2015年04期
9 匡曉明;魏本勝;;城市規(guī)劃中快遞網(wǎng)點服務區(qū)預測與評價[J];江蘇城市規(guī)劃;2015年03期
10 段水利;;我國快遞業(yè)發(fā)展影響因素實證分析[J];物流工程與管理;2015年01期
相關(guān)博士學位論文 前2條
1 杜艷;我國快遞業(yè)對國民經(jīng)濟增長作用機制研究[D];北京郵電大學;2013年
2 匡旭娟;演化視角下的快遞業(yè)網(wǎng)絡形態(tài)研究[D];北京交通大學;2008年
相關(guān)碩士學位論文 前10條
1 李燕芝;區(qū)域快遞業(yè)務量預測及接駁點選址問題研究[D];浙江工商大學;2015年
2 姜博;基于Shapley-組合預測的區(qū)域物流需求預測及實證研究[D];安徽理工大學;2015年
3 韓姣;山西快遞市場的需求預測研究[D];西安建筑科技大學;2015年
4 謝夏成;上海地區(qū)快遞物流節(jié)點的空間格局分析[D];上海師范大學;2015年
5 李妮娜;基于中心地理論的城市快遞服務網(wǎng)點選址研究[D];北京交通大學;2015年
6 曹雪梅;河北省快遞業(yè)升級能力評價及提升對策研究[D];燕山大學;2014年
7 季彤;快遞業(yè)發(fā)展影響因素分析[D];南京郵電大學;2012年
8 李俊英;基于產(chǎn)業(yè)關(guān)聯(lián)的我國快遞產(chǎn)業(yè)的發(fā)展研究[D];上海師范大學;2011年
9 姜濤;南方快遞信息系統(tǒng)體系模型研究[D];北京交通大學;2008年
10 邱官升;快遞業(yè)服務質(zhì)量分析與改善方法研究[D];長安大學;2008年
,本文編號:2209354
本文鏈接:http://sikaile.net/kejilunwen/yysx/2209354.html