Courant代數(shù)胚與廣義復(fù)幾何
發(fā)布時(shí)間:2018-08-27 11:28
【摘要】:本文綜述Courant代數(shù)胚的研究背景、發(fā)展歷史、重要理論及其應(yīng)用.本文回顧和介紹該領(lǐng)域中一些關(guān)鍵的發(fā)現(xiàn)和進(jìn)展,并重點(diǎn)闡述Courant代數(shù)胚定義的來龍去脈,以及相應(yīng)的Dirac結(jié)構(gòu)、李雙代數(shù)胚、Clifford構(gòu)造、旋量表示、廣義復(fù)幾何以及正則Courant代數(shù)胚的理論框架和一些主要的結(jié)論.
[Abstract]:This paper reviews the research background, development history, important theories and applications of Courant algebraic embryos. Some key discoveries and developments in this field are reviewed and introduced. The origin and development of the definition of Courant algebraic embryos, as well as the corresponding Dirac structures, Lie bialgebraic embryos, Clifford constructions, screw representations, generalized complex geometry and canonical Co structures are emphasized. The theoretical framework and some main conclusions of urant algebras.
【作者單位】: 清華大學(xué)數(shù)學(xué)科學(xué)系;北京大學(xué)數(shù)學(xué)科學(xué)學(xué)院;Department
【基金】:國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào):11471179和11471139)資助項(xiàng)目
【分類號(hào)】:O152.5
,
本文編號(hào):2207137
[Abstract]:This paper reviews the research background, development history, important theories and applications of Courant algebraic embryos. Some key discoveries and developments in this field are reviewed and introduced. The origin and development of the definition of Courant algebraic embryos, as well as the corresponding Dirac structures, Lie bialgebraic embryos, Clifford constructions, screw representations, generalized complex geometry and canonical Co structures are emphasized. The theoretical framework and some main conclusions of urant algebras.
【作者單位】: 清華大學(xué)數(shù)學(xué)科學(xué)系;北京大學(xué)數(shù)學(xué)科學(xué)學(xué)院;Department
【基金】:國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào):11471179和11471139)資助項(xiàng)目
【分類號(hào)】:O152.5
,
本文編號(hào):2207137
本文鏈接:http://sikaile.net/kejilunwen/yysx/2207137.html
最近更新
教材專著