對(duì)于矩陣數(shù)據(jù)分類的雙支持矩陣機(jī)
[Abstract]:Nowadays, Zhang Liang as a common form is more and more widely used in various fields. How to classify Zhang Liang data is an important research topic, such as face recognition, visual recognition, medical image and so on. Matrix, is a second-order Zhang Liang, can be used to build a vector and Zhang Liang between the bridge. High order Zhang Liang can also expand into matrix form, so how to classify matrix data has important significance. In this paper, a clever learning framework is proposed as an extension of the double support vector machine (DSVM). Different from the double support vector machine, the multi-rank multi-linear double support matrix classifier uses two pairs of projection matrices to construct a pair of functions. This pair of functions is used to establish a decision function. Compared with the method based on vector input, the method based on matrix can not only preserve the structure of matrix data, but also reduce the computational complexity. In addition, we add a regular term to improve the performance of multi-rank multi-linear bilinear support matrix classifier, and introduce a clever algorithm for multi-rank multi-linear bilinear support matrix classifier. Experimental results on the classification accuracy, convergence and computation time of different methods will be shown. The input of high dimensional matrix not only occupies a large amount of memory, but also needs a large amount of running memory in the process of calculation. In order to improve the ability of storing and computing the input of high-dimensional matrix, this paper improves the multi-rank and multi-linear bilinear support matrix classifier based on singular value decomposition (SVD). On the basis of multi-rank multi-linear bilinear support matrix classifier, a two-support matrix classifier based on singular value decomposition (SVD) is established. For matrix input, we define a matrix mapping function based on matrix singular value decomposition, which is used to deal with matrix input, reduce data dimension and form a new training set. By learning the new training set, the classification accuracy will increase and the training time will be reduced. Five groups of data sets are trained. Compared with other classification methods, the dual support matrix classifier based on singular value decomposition is an effective classifier.
【學(xué)位授予單位】:新疆大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O151.21;O183.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈守楓;;低維非線性系統(tǒng)的一般多線性變量分離方法和局域激發(fā)模式[J];物理學(xué)報(bào);2006年03期
2 陸善鎮(zhèn),燕敦驗(yàn);多線性振蕩積分的一個(gè)注記[J];數(shù)學(xué)學(xué)報(bào);2001年05期
3 杜艷艷;劉官?gòu)d;韓飛;;(2+1)維Boiti-Leon-Pemponelli方程的多線性分離變量法[J];內(nèi)蒙古師范大學(xué)學(xué)報(bào)(自然科學(xué)漢文版);2008年03期
4 包志華;斯仁道爾吉;包來(lái)友;;(2+1)維耗散長(zhǎng)水波方程的一般多線性分離變量解[J];內(nèi)蒙古師范大學(xué)學(xué)報(bào)(自然科學(xué)漢文版);2010年01期
5 王龍;多線性參數(shù)化區(qū)間系統(tǒng)的嚴(yán)格正實(shí)問(wèn)題[J];中國(guó)科學(xué)E輯:技術(shù)科學(xué);1998年05期
6 孫振東;;連續(xù)時(shí)間多線性動(dòng)態(tài)系統(tǒng)的性能分析[J];控制理論與應(yīng)用;2014年07期
7 薛麗梅;王會(huì)敏;李剛;;多線性位勢(shì)型算子的雙權(quán)弱型不等式[J];河北師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年04期
8 陶雙平;馮進(jìn)喜;;一類多線性奇異積分的弱型估計(jì)[J];數(shù)學(xué)學(xué)報(bào);2009年03期
9 張雋;譚喜玉;;KdV6方程的多線性分離變量解[J];浙江工業(yè)大學(xué)學(xué)報(bào);2012年06期
10 錢濤;關(guān)于多線性奇異積分的估計(jì)[J];中國(guó)科學(xué)(A輯 數(shù)學(xué) 物理學(xué) 天文學(xué) 技術(shù)科學(xué));1984年07期
相關(guān)博士學(xué)位論文 前1條
1 夏阿林;高維化學(xué)計(jì)量學(xué)方法的若干基礎(chǔ)性研究以及在藥物分析中的應(yīng)用[D];湖南大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 金政;分段多線性支持張量機(jī)[D];華南理工大學(xué);2015年
2 金芳婷;多線性分?jǐn)?shù)次算子在非齊次空間上的有界性[D];江西師范大學(xué);2015年
3 杜艷艷;非線性系統(tǒng)中的多線性分離變量法和局域激發(fā)模式[D];內(nèi)蒙古師范大學(xué);2008年
4 翟清;若干非線性系統(tǒng)的多線性分離變理解[D];寧波大學(xué);2011年
5 來(lái)嫻靜;孤子系統(tǒng)的多線性變量分離及其局域激發(fā)研究[D];浙江師范大學(xué);2005年
6 吳云頻;一類多線性奇異積分的有界性的研究[D];寧波大學(xué);2011年
7 包志華;幾類非線性方程的多線性分離變量解[D];內(nèi)蒙古師范大學(xué);2010年
8 王會(huì)敏;多線性位勢(shì)型算子的加權(quán)不等式[D];河北師范大學(xué);2009年
9 于文新;多線性Marcinkiewicz算子有界性研究[D];長(zhǎng)沙理工大學(xué);2008年
10 申英;Littlewood-Paley算子生成的多線性交換子的有界性研究[D];長(zhǎng)沙理工大學(xué);2012年
,本文編號(hào):2205758
本文鏈接:http://sikaile.net/kejilunwen/yysx/2205758.html