兩類二元函數(shù)芽的一個共同性質(zhì)和其亞標(biāo)準(zhǔn)形式
發(fā)布時間:2018-08-25 08:54
【摘要】:利用J.N.Mather有限決定性定理和光滑函數(shù)芽的右等價關(guān)系,給出了帶有任意4次至k次齊次多項式p_i(x,y),q_i(x,y)(i=4,5,…,k)的兩類二元函數(shù)芽f_i=x~3+∑_(i=4)~kp_i(x,y),f_2=y~3+∑_(i=4)~k=4q_i(x,y)(k≥5)的一個共同性質(zhì):若M_2~k銰M_2J(f_j)(j=1,2)且f_1,f_2的軌道切空間的余維分布均為c_i=2(i=4,5,…,k-1),則對這個i,p_i(x,y)中x~2y~(i-2),xy~(i-1),y~i的系數(shù)和q_i(x,y)中x~(i-2)y~2,x~(i-1)y,x~i的系數(shù)均為零.最后,利用該性質(zhì),給出了f_1,f_2和一類余維數(shù)為8的二元函數(shù)芽的亞標(biāo)準(zhǔn)形式.
[Abstract]:By using J.N.Mather 's finite determinacy theorem and the right equivalence relation of smooth function germs, we give a polynomial with arbitrary degree 4 to k degree homogeneous P _ S _ I (XN _ y) / Q _ I _ I (x ~ y). Two kinds of binary function buds f_i=x~3 鈭,
本文編號:2202383
[Abstract]:By using J.N.Mather 's finite determinacy theorem and the right equivalence relation of smooth function germs, we give a polynomial with arbitrary degree 4 to k degree homogeneous P _ S _ I (XN _ y) / Q _ I _ I (x ~ y). Two kinds of binary function buds f_i=x~3 鈭,
本文編號:2202383
本文鏈接:http://sikaile.net/kejilunwen/yysx/2202383.html
最近更新
教材專著