一族帶有兩參數(shù)的修正型Chebyshev-Halley迭代方法(英文)
發(fā)布時(shí)間:2018-08-20 17:02
【摘要】:應(yīng)用(2,1)階Padé逼近方法,得到不需要計(jì)算二階導(dǎo)數(shù)求解非線性方程的修正型Chebyshev-Halley方法的新兩參數(shù)族,證明該族方法是至少三階收斂。該族方法的每步迭代需要計(jì)算兩個(gè)函數(shù)和一個(gè)一階導(dǎo)數(shù),數(shù)值實(shí)驗(yàn)表明,該族迭代方法與其它方法相比,在許多方面得到了更好的數(shù)值結(jié)果。
[Abstract]:In this paper, a new two-parameter family of modified Chebyshev-Halley 's method without calculating the second order derivative for solving nonlinear equations is obtained by using the (2 ~ (1) order Pad 茅 approximation method. It is proved that the family method is at least third-order convergence. Each iteration of this family of methods needs to calculate two functions and one first order derivative. Numerical experiments show that the family iterative method has better numerical results than other methods in many aspects.
【作者單位】: 長春工業(yè)大學(xué)基礎(chǔ)科學(xué)學(xué)院;空軍航空大學(xué)基礎(chǔ)部;
【基金】:Supported by the National Natural Science Foundation of China(11401046;11301036) the Scientific Research Foundation of the Education Department of Jilin Province(JJKH20170536KJ;JJKH20170537KJ)
【分類號(hào)】:O241.6
[Abstract]:In this paper, a new two-parameter family of modified Chebyshev-Halley 's method without calculating the second order derivative for solving nonlinear equations is obtained by using the (2 ~ (1) order Pad 茅 approximation method. It is proved that the family method is at least third-order convergence. Each iteration of this family of methods needs to calculate two functions and one first order derivative. Numerical experiments show that the family iterative method has better numerical results than other methods in many aspects.
【作者單位】: 長春工業(yè)大學(xué)基礎(chǔ)科學(xué)學(xué)院;空軍航空大學(xué)基礎(chǔ)部;
【基金】:Supported by the National Natural Science Foundation of China(11401046;11301036) the Scientific Research Foundation of the Education Department of Jilin Province(JJKH20170536KJ;JJKH20170537KJ)
【分類號(hào)】:O241.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王全龍;對(duì)《弱Chebyshev集與樣條》一文的訂正和推廣[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);1981年02期
2 周家斌;ON THE EXPANSION OF CHEBYSHEV POLYNOMIALS IN IRREGULAR GRIDS[J];A Monthly Journal of Science;1982年05期
3 孫燮華;THE EXACTLY POINTWISE DEGREE OF APPROXIMATION OF HERMITE-FEJ,
本文編號(hào):2194350
本文鏈接:http://sikaile.net/kejilunwen/yysx/2194350.html
最近更新
教材專著