基于PPI網(wǎng)絡(luò)的關(guān)鍵蛋白質(zhì)識(shí)別方法研究及應(yīng)用
[Abstract]:Protein is all the cells that make up the organism, the important component of the tissue, is the material foundation of life. Proteins participate in all important parts of the body. In general, the protein is a key protein because of the loss of the function of the organism and even the inexistence of the organism after the gene mutation and removal of the protein. Because the survival of organisms and the reproduction of offspring can not be separated from key proteins, one of the important research contents in life science is to recognize key proteins. In this paper, based on the topological structure of protein interaction (PPI) network, the key proteins are predicted by fusion of multi-source biological information. The main contents are as follows: (1) an improved PageRank algorithm based on EPP (Essential Proteins Predict) is proposed to recognize key proteins. The algorithm regards the PPI network as an uncertain network with attributes on the vertices, and then regards the top p% of the important vertices as the key protein in the network. The method first needs to calculate the similarity between the vertices (i.e. protein). For the similarity calculation, we consider the reliability and semantic similarity information of the protein. Secondly, For each vertex in PPI network, we also consider the neighbor information of vertex, that is, calculate the neighborhood similarity of vertex, and calculate the importance of vertex by using the credibility and semantic similarity proposed above. The proposed algorithm takes into account the topological information of PPI network and the biological information of protein, so it has the advantages of low complexity and high recognition accuracy. We use the standard data set to test, and the experimental results show that the proposed algorithm can recognize more accurate key proteins. (2) based on the improved PSO algorithm, EPPSO (EssentialProtein PSO) is proposed to recognize the key proteins. In this algorithm, we propose a holistic index to measure the key protein of top-p, rather than a single index to evaluate the key protein. EPPSO adopts the method of selecting candidate solutions, each candidate contains a protein. We can measure the key of the P protein as a whole. For the whole key, we measure the closeness of the relationship between these proteins and other proteins, that is, the fitness function proposed in the algorithm. Then according to the idea of particle swarm optimization, the function is updated by tracking the global optimal value and the individual optimal value. In order to evaluate the performance of the algorithm, we run the algorithm on standard data sets such as yeast datasets. The experimental results show that the recognition accuracy of this algorithm is better than that of other classical algorithms. In addition, because the algorithm only needs to identify P key proteins, but not to calculate each key protein one by one according to a certain index, it has a low computational complexity. (3) on the basis of the above work, An online key protein recognition system based on WEB is designed in this paper. In this system, the predicted results can be graphically reflected in the system, which is convenient and efficient. After testing, the system runs stably, the interface is beautiful, and has good economic value and social value.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:Q51;O157.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 代中堯;石琳;;PPI協(xié)議在PLC網(wǎng)絡(luò)系統(tǒng)設(shè)計(jì)中的應(yīng)用[J];成都大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年02期
2 李陵;;基于西門子PPI網(wǎng)絡(luò)的模擬自動(dòng)生產(chǎn)線通信系統(tǒng)設(shè)計(jì)[J];科技廣場(chǎng);2012年02期
3 譚本艷;;我國(guó)PPI波動(dòng)的長(zhǎng)期驅(qū)動(dòng)力與短期驅(qū)動(dòng)力——基于Gonzalo-Granger分解的分析[J];軟科學(xué);2009年08期
4 安新宇,李毅,史玉嚴(yán),張少文;一次強(qiáng)降雪的雷達(dá)PPI速度圖像分析[J];內(nèi)蒙古氣象;2004年04期
5 田建芳;雷秀娟;;基于蜂群和廣度優(yōu)先遍歷的PPI網(wǎng)絡(luò)聚類[J];模式識(shí)別與人工智能;2012年03期
相關(guān)會(huì)議論文 前4條
1 羅昭林;鐘杭美;劉春燕;祝善俊;王永;周銀;;老年冠心病伴與不伴心肌缺血患者動(dòng)態(tài)血壓PP與PPI改變的臨床意義[A];中國(guó)心臟大會(huì)(CHC)2011暨北京國(guó)際心血管病論壇論文集[C];2011年
2 曾穎;楊敏;關(guān)焯梅;;奧美拉唑與其它PPI制劑治療GERD療效比較系統(tǒng)評(píng)價(jià)[A];共鑄醫(yī)藥學(xué)術(shù)新文明——2012年廣東省藥師周大會(huì)論文集[C];2012年
3 甘曉蘭;官亮;;PPI聯(lián)合胃三聯(lián)根除幽門螺桿菌治療功能性消化不良的療效觀察[A];中華醫(yī)學(xué)會(huì)第七次全國(guó)消化病學(xué)術(shù)會(huì)議論文匯編(上冊(cè))[C];2007年
4 王志仁;譚云龍;楊甫德;陳松;楊貴剛;張五芳;王紹禮;周宇;李東;李英麗;周東豐;;重復(fù)經(jīng)顱磁刺激(rTMS)對(duì)精神分裂癥幻聽患者聽覺驚跳反射弱刺激抑制(PPI)的影響[A];中華醫(yī)學(xué)會(huì)精神病學(xué)分會(huì)第九次全國(guó)學(xué)術(shù)會(huì)議論文集[C];2011年
相關(guān)重要報(bào)紙文章 前10條
1 郭俊;新余隊(duì)全力夯實(shí)PPI聯(lián)網(wǎng)直報(bào)基礎(chǔ)[N];中國(guó)信息報(bào);2014年
2 本報(bào)記者 丁鑫;7月份經(jīng)濟(jì)數(shù)據(jù)透視:PPI負(fù)增長(zhǎng)局面將改變[N];證券日?qǐng)?bào);2014年
3 本報(bào)記者 傅蘇穎;三因素促生產(chǎn)資料上漲 PPI同比降幅將進(jìn)一步收窄[N];證券日?qǐng)?bào);2012年
4 本報(bào)記者 查理思閱 整理;出口走出低谷 PPI跌至深淵降準(zhǔn)降息是柄雙刃劍[N];華夏時(shí)報(bào);2012年
5 證券時(shí)報(bào)記者 許巖;PPI降幅繼續(xù)收窄 消費(fèi)增速創(chuàng)新低[N];證券時(shí)報(bào);2013年
6 叢榕;煤炭開采業(yè)PPI趕底 價(jià)格走勢(shì)至關(guān)重要[N];中國(guó)證券報(bào);2009年
7 記者 許晶盈 通訊員 區(qū)敏麗;上半年湛江PPI下降0.9%[N];湛江日?qǐng)?bào);2013年
8 周樹遠(yuǎn);PPI一路飛揚(yáng) “后奧運(yùn)”汽車業(yè)“漲”字當(dāng)頭[N];中國(guó)經(jīng)營(yíng)報(bào);2008年
9 華泰證券研究所 周林;PPI數(shù)據(jù)平添股市“秋涼”[N];中國(guó)證券報(bào);2008年
10 記者 潘清;PPI數(shù)據(jù)影響有限滬深股市溫和反彈[N];新華每日電訊;2008年
相關(guān)碩士學(xué)位論文 前7條
1 牛強(qiáng);氯吡格雷聯(lián)用PPI對(duì)冠心病人群主要心血管不良事件影響的薈萃分析[D];山東大學(xué);2016年
2 應(yīng)超;在PPI網(wǎng)絡(luò)中識(shí)別蛋白質(zhì)復(fù)合物[D];陜西師范大學(xué);2016年
3 宣紅東;水稻PPI網(wǎng)絡(luò)中逆境響應(yīng)miRNA所靶向的基因拓?fù)涮卣鞣治鯷D];安徽農(nóng)業(yè)大學(xué);2016年
4 陳樂;和聲搜索聚類優(yōu)化模型的PPI功能模塊挖掘算法研究[D];江西理工大學(xué);2017年
5 伍旭;PPI:當(dāng)前我國(guó)通貨膨脹的先行指標(biāo)[D];暨南大學(xué);2008年
6 王大光;甘寒濡潤(rùn)法結(jié)合PPI治療GERD胃火陰虛證臨床觀察[D];南京中醫(yī)藥大學(xué);2007年
7 韓亞;基于正中神經(jīng)傳導(dǎo)速度觀察電針內(nèi)關(guān)穴抗家兔PPI誘導(dǎo)心肌缺血的實(shí)驗(yàn)研究[D];黑龍江中醫(yī)藥大學(xué);2014年
,本文編號(hào):2190436
本文鏈接:http://sikaile.net/kejilunwen/yysx/2190436.html