天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

Z-子集系統(tǒng)上的若干性質(zhì)

發(fā)布時(shí)間:2018-08-12 10:30
【摘要】:本文主要探討了偏序集上的Z子集系統(tǒng)的若干性質(zhì),包括Z -Scott拓?fù)、Z - Lawson拓?fù)湟约癦 - Scott開濾子的一些性質(zhì).第一章,引言中給出了本文的研究背景和相關(guān)進(jìn)展,預(yù)備知識中給出了偏序集的基本概念,以及本文需要用到的一些基本結(jié)果.第二章分為四節(jié).第一節(jié)介紹了Z 子集系統(tǒng)以及Z-連續(xù)偏序集、雙Z-連續(xù)偏序集的相關(guān)定義.定義了Z-way- below關(guān)系,討論了 Z-連續(xù)偏序集上的Z-分配律以及其他一些性質(zhì).第二節(jié)定義了偏序集上的Z - Scott拓?fù)、Z - Lawson拓?fù)湟约半pZ - Scott拓?fù)?討論了 Z - Scott拓?fù)浜碗pZ - Scott拓?fù)涞囊恍┬再|(zhì).第三節(jié)討論了偏序集上Z - Scott拓?fù)、Z - Lawson拓?fù)涞腡1分離性,定義了Z 擬連續(xù)偏序集,并在Z-擬連續(xù)偏序集的基礎(chǔ)上討論了 Z - Scott拓?fù)洹 - Lawson拓?fù)涞腡2分離性,最后討論了 Z - Lawson拓?fù)涞钠渌再|(zhì).第四節(jié)給出Z -Scott開濾子的定義,得到U是Z-Scott開濾子的充分必要條件.定義了集合之間的way - blow關(guān)系,并討論了集合之間的way和Z below- Scott開濾子之間的一些關(guān)系.第三章,首先給出了 Z-連續(xù)映射,雙Z-連續(xù)映射,Z - Scott連續(xù)映射,雙Z - Scott連續(xù)映射的定義,并討論了雙Z - Scott連續(xù)映射及雙Z-連續(xù)映射,Z-連續(xù)映射與雙Z - Scott連續(xù)映射之間的關(guān)系,給出了雙Z - Scott連續(xù)映射的充分條件.
[Abstract]:In this paper, we mainly discuss some properties of Z subset system on partial ordered sets, including Z Scott topology Z Lawson topology and Z Scott open filter. In the first chapter, the research background and related progress of this paper are given in the introduction, the basic concept of partial ordered set is given in the preparatory knowledge, and some basic results that need to be used in this paper are also given. The second chapter is divided into four sections. In the first section, we introduce the Z subset system and the definitions of Z continuous partial ordered set and double Z continuous partial order set. The Z-way-below relation is defined, and the Z-distributive law and some other properties on Z-continuous partial ordered sets are discussed. In the second section, we define Z Scott topology, Z Lawson topology and double Z Scott topology on partial ordered set, and discuss some properties of Z Scott topology and double Z Scott topology. In the third section, we discuss the T1 separability of Z Scott topology and Z Lawson topology on the partial ordered set, define Z quasi continuous partial ordered set, and discuss the T2 separation of Z Scott topology and Z Lawson topology on the basis of Z quasicontinuous partial order set. Finally, other properties of Z-Lawson topology are discussed. In the fourth section, the definition of Z -Scott open filter is given, and the necessary and sufficient conditions for U to be Z-Scott open filter are obtained. The way blow relation between sets is defined, and some relations between way and Z below-Scott open filters between sets are discussed. In chapter 3, we first give the definitions of Z continuous mapping, double Z continuous mapping and double Z Scott continuous mapping. The relations between double Z Scott continuous mapping, double Z continuous mapping and double Z Scott continuous mapping are discussed. The sufficient conditions of double Z Scott continuous mapping are given.
【學(xué)位授予單位】:南京師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O153.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 高嘉凌;趙彬;;雙Z-連續(xù)格和雙Z-Scott拓?fù)涞男再|(zhì)[J];陜西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期

2 范麗紅;;偏序集上的雙Scott拓?fù)鋄J];臺州學(xué)院學(xué)報(bào);2009年06期

3 饒三平;徐曉泉;;擬Z-極小集及其應(yīng)用[J];模糊系統(tǒng)與數(shù)學(xué);2008年04期

4 姚麗娟;徐曉泉;;Z-連續(xù)偏序集的特征與稠密度[J];江西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期

5 張春波;徐曉泉;;Z-連續(xù)偏序集的映射性質(zhì)[J];江西科學(xué);2008年03期

6 阮小軍;畢含宇;趙洋;;Z-極小集及其對Z-連續(xù)偏序集的應(yīng)用[J];江西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年04期

7 李娟;Z-連續(xù)偏序集的基[J];寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年04期

8 徐曉泉,羅懋康,黃艷;擬Z-連續(xù)domain和Z-交連續(xù)domain[J];數(shù)學(xué)學(xué)報(bào);2005年02期

9 徐曉泉,劉應(yīng)明;Z-擬連續(xù)domain上的Scott拓?fù)浜蚅awson拓?fù)鋄J];數(shù)學(xué)年刊A輯(中文版);2003年03期

10 覃鋒,徐曉泉;廣義Z-連續(xù)偏序集[J];江西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年03期

相關(guān)碩士學(xué)位論文 前1條

1 李伯權(quán);Z-連續(xù)偏序集[D];南京師范大學(xué);2004年



本文編號:2178778

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2178778.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶da200***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com