服務(wù)臺(tái)修復(fù)非新的可修排隊(duì)系統(tǒng)
[Abstract]:In recent years, repairable queueing system has been paid more and more attention and some achievements have been obtained. Service desk repair is another extension of repairable queueing system. In the modern society with the rapid development of science and technology, the purpose of service organization is to provide convenient and efficient service for customers, and to obtain the best economic benefit at the same time, the repair of service desk must take into account the maintenance cost when the fault of service desk occurs. A series of changes caused by the cost of replacing the new service desk and the change of service rate and failure rate after maintenance. This paper studies the effect of this kind of problem on queuing system, and provides a scientific and effective basis for the practical application of queueing system. First of all, the paper studies the repair of non-new M/M/1/N repairable queueing system. Assuming that the service desk can be broken and can not be repaired if new, the service life service is exponentially distributed. The matrix solution of steady-state probability is obtained by using Markov process theory and matrix geometry method. On this basis, the average queue length and average waiting length of the system are obtained, and the corresponding numerical experiments are carried out by MATLAB. Secondly, the M/M/2/N repairable queue system is repaired by the help desk, and the matrix solution of steady probability is obtained by using Markov process theory and matrix geometry method. On this basis, the average length of the system is obtained. The average waiting length and other performance indexes were tested by MATLAB. Finally, the M/M/1 repairable queuing model with Bernoulli feedback strategy is studied. It is assumed that each customer receives a service with a certain probability (feedback probability). Reline at the end of the line to wait for service again, or with probabilities 1? The steady state distribution and reliability index of the system are obtained by matrix geometric solution and pseudo birth and death process, and numerical experiments are carried out.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:O226
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉鋒;歐東;魏智;;門診智能排隊(duì)系統(tǒng)的設(shè)計(jì)與應(yīng)用[J];中國(guó)醫(yī)學(xué)教育技術(shù);2010年03期
2 徐剛;;帶有中途退出且具有快慢2種服務(wù)速率的排隊(duì)系統(tǒng)[J];高師理科學(xué)刊;2012年03期
3 何雅慶;謝應(yīng)朗;宋勤;武葉;邱雄;鐘榮迪;;體檢排隊(duì)系統(tǒng)的應(yīng)用價(jià)值[J];中國(guó)醫(yī)藥科學(xué);2013年17期
4 歐陽(yáng)克智;;多服務(wù)員排隊(duì)系統(tǒng)與相關(guān)的單服務(wù)員排隊(duì)系統(tǒng)之間的一些關(guān)系[J];新疆大學(xué)學(xué)報(bào)(自然科學(xué)版);1985年04期
5 李必勝;關(guān)于M/M/1排隊(duì)系統(tǒng)的一個(gè)命題[J];天津理工學(xué)院學(xué)報(bào);1994年04期
6 嚴(yán)世英;張鳳賢;M/M/1排隊(duì)系統(tǒng)的一個(gè)簡(jiǎn)化瞬態(tài)解[J];系統(tǒng)工程理論方法應(yīng)用;1994年04期
7 邢玉國(guó);排隊(duì)系統(tǒng)的計(jì)算機(jī)模擬[J];青島大學(xué)學(xué)報(bào)(自然科學(xué)版);1995年02期
8 周文慧,尹小玲;具有批到達(dá)的滯后排隊(duì)系統(tǒng)分析[J];應(yīng)用數(shù)學(xué)與計(jì)算數(shù)學(xué)學(xué)報(bào);2002年02期
9 郭彩芬,李祥全,王寧生;凸優(yōu)化方法及其在排隊(duì)系統(tǒng)中的應(yīng)用研究[J];系統(tǒng)工程;2004年04期
10 侯振挺,何寧卡;馬氏骨架過(guò)程與一個(gè)排隊(duì)系統(tǒng)的瞬時(shí)隊(duì)長(zhǎng)[J];鐵道科學(xué)與工程學(xué)報(bào);2004年02期
相關(guān)會(huì)議論文 前10條
1 何明;;系統(tǒng)仿真在服務(wù)業(yè)排隊(duì)系統(tǒng)中的應(yīng)用[A];第六屆中國(guó)青年運(yùn)籌與管理學(xué)者大會(huì)論文集[C];2004年
2 余英;趙東風(fēng);;兩級(jí)周期查詢完全、門限服務(wù)排隊(duì)系統(tǒng)研究[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)論文集[C];2008年
3 吳軍;徐渝;歐海鷹;;證券公司營(yíng)業(yè)部客戶排隊(duì)系統(tǒng)研究[A];2002年中國(guó)管理科學(xué)學(xué)術(shù)會(huì)議論文集[C];2002年
4 楊大干;郭希超;徐根云;陳瑜;;叫號(hào)排隊(duì)系統(tǒng)在檢驗(yàn)抽血中的應(yīng)用[A];2007年浙江省醫(yī)學(xué)檢驗(yàn)學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2007年
5 岳德權(quán);石天林;張彥;;Geometic/G/1離散時(shí)間可修排隊(duì)系統(tǒng)[A];中國(guó)運(yùn)籌學(xué)會(huì)第七屆學(xué)術(shù)交流會(huì)論文集(下卷)[C];2004年
6 劉瑞華;涂奉生;;參數(shù)局部表達(dá)式方法及其在GI/G/m排隊(duì)系統(tǒng)中的應(yīng)用[A];1993年控制理論及其應(yīng)用年會(huì)論文集[C];1993年
7 郝永生;冰冰;;M/M/1排隊(duì)系統(tǒng)的服務(wù)能力[A];全國(guó)青年管理科學(xué)與系統(tǒng)科學(xué)論文集第5卷[C];1999年
8 唐應(yīng)輝;;多重休假M(fèi)/G/1排隊(duì)系統(tǒng)等待時(shí)間分布的界值[A];第三屆不確定系統(tǒng)年會(huì)論文集[C];2005年
9 余s卻,
本文編號(hào):2173392
本文鏈接:http://sikaile.net/kejilunwen/yysx/2173392.html