Bose-Einstein凝聚基態(tài)解的時(shí)空自適應(yīng)方法
[Abstract]:Partial differential equations are widely used to describe many practical problems in modern science and engineering calculation. It is very important to solve the differential equations which do not exist in analytic solutions. With the development of mathematical theory and calculation methods, the finite difference method, finite volume method and finite element method have been able to solve most differential equations. However, for the equations with singular numerical solutions, if the uniform grid requires a lot of computing resources, especially the high-dimensional problem, it may be beyond the computing power of the computer. The moving mesh method redistributes the mesh according to the characteristics of the numerical solution, which can effectively reduce the calculation error without wasting computing resources. At the same time, in the actual numerical calculation, it may take a long time to select the uniform time step. The time adaptive method can continuously adjust the time step in the calculation process, thus improving the efficiency of numerical calculation. In 1925, Einstein predicted that the particles in the gas at very low temperature would be in the same quantum state. Bose-Einstein condensed state (BEC). Was found in rarefied alkali metal gases. This problem has attracted the attention of physicists and mathematicians. The nonlinear Schrodinger (NLS) equation is usually used to describe the single particle properties of Bose-Einstein condensed matter. A large number of researchers have studied the nonlinear Schrodinger equation theoretically and numerically, and put forward a series of numerical solutions. In the infinite potential well, the boundary layer will appear in the ground state solution of Bose-Einstein condensate when there is a strong interaction between the particles. Therefore, it needs a lot of computing resources to calculate the ground state solution using uniform grid. At the same time, to solve the ground state solution of Bose-Einstein condensation is to find the minimum point of the energy functional under the limited condition. The energy changes sharply in the initial stage of numerical calculation, but changes very slowly when it is near convergence. Therefore, it takes a long calculation time to adopt the uniform time step. According to the spatial and temporal characteristics of the numerical solution of the problem, using the moving grid method in space and time adaptive method in time can effectively improve the efficiency of numerical calculation. In this paper, a spatiotemporal adaptive finite element method is introduced to solve the ground state solution of Bose-Einstein condensed matter. Firstly, the adaptive method and the theory of nonlinear Schrodinger equation are introduced. Secondly, the moving grid method based on equal distribution principle for one-dimensional problem, the mobile grid method based on harmonic mapping and the time adaptive method for two-dimensional problem are introduced. Then, the numerical characteristics of ground state solutions of Bose-Einstein condensed matter under different potential wells are analyzed, and how to realize mobile grid technology in space and self-adaptation in time are proposed. Based on the spatio-temporal adaptive finite element method, a numerical example of the ground state solution of Bose-Einstein condensation in one and two dimensions is given. The numerical results of uniform mesh and moving grid are analyzed and compared, and the validity of the spatio-temporal adaptive method is pointed out.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O241.82
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉堂昆 ,王繼鎖 ,詹明生;A Disentanglement Scheme of One-off on Two Einstein-Podolsky-Rosen Pairs of Atoms[J];量子光學(xué)學(xué)報(bào);2002年S1期
2 陳付廣,黃德斌,郭榮偉;Dynamics in Two Periodically Driven and Weakly Coupled Bose-Einstein Condensates[J];Journal of Shanghai University;2005年03期
3 ;Einstein's Impact on Theoretical Physics in the 21st Century[J];自然科學(xué)史研究;2005年S1期
4 Gerald Holton;Einstein's Third Paradise[J];自然科學(xué)史研究;2005年S1期
5 Diana Kormos Buchwald;The Einstein Papers Project 1955~2005[J];自然科學(xué)史研究;2005年S1期
6 ;Albert Einstein, Physics and Life—Interview with Prof.C.N.Yang[J];自然科學(xué)史研究;2005年S1期
7 Gerald Holton;Einstein’s Third Paradis[J];自然辯證法通訊;2005年01期
8 ;Envelope Periodic Solutions to One-Dimensional Gross-Pitaevskii Equation in Bose-Einstein Condensation[J];Communications in Theoretical Physics;2009年06期
9 唐基清;俞慧友;顏家壬;周正;;Exact Nonstationary Solutions of a Two-Component Bose-Einstein Condensate[J];Communications in Theoretical Physics;2010年02期
10 ;Einstein's Theory of Gravity: Alternative Experiment and Theory[J];Chinese Journal of Systems Engineering and Electronics;1995年04期
相關(guān)會(huì)議論文 前10條
1 ;Long Range Order and Bose-Einstein Condensation of Magnons in Gapped Spin Systems[A];2006“與統(tǒng)計(jì)有關(guān)的凝聚態(tài)物理中一些數(shù)值計(jì)算問題”研討會(huì)論文集[C];2006年
2 ;On the way to Bose-Einstein condensates in Optical and Electro-Magnetic Traps[A];Laser Cooling: Bose-Einstein Condensation and Atom Laser--Proceedings of CCAST (World Laboratory) Workshop[C];1999年
3 劉堂昆;王繼鎖;詹明生;;A Disentanglement Scheme of One-off on Two Einstein-Podolsky-Rosen Pairs of Atoms[A];第十屆全國量子光學(xué)學(xué)術(shù)報(bào)告會(huì)論文論文集[C];2002年
4 Ennio Arimondo;;Nonlinear Effects for Bose Einstein Condensates in Optical Lattices[A];第十二屆全國量子光學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2006年
5 ;Experimental Study on Atom Laser and Bose-Einstein Condensate[A];第十二屆全國量子光學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2006年
6 劉伍明;;Non-Abelian Josephson effect[A];第十四屆全國量子光學(xué)學(xué)術(shù)報(bào)告會(huì)報(bào)告摘要集[C];2010年
7 ;Chaos and Bifurcations for the two-component Bose-Einstein Condensate System[A];第十一屆全國非線性振動(dòng)學(xué)術(shù)會(huì)議暨第八屆全國非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2007年
8 李繼彬;;Chaos and Bifurcations for the two component Bose-Einstein Condensate System[A];第十一屆全國非線性振動(dòng)學(xué)術(shù)會(huì)議暨第八屆全國非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文摘要集[C];2007年
9 J.S.Bell;;On the Einstein-Podolsky-Rosen paradox[A];Quantum Entanglement and Quantum Information--Proceedings of CCAST (World Laboratory) Workshop[C];1999年
10 ;Ultracold Atoms:From Bose-Einstein Condensation to Atomic Superfluidity[A];Laser Cooling: Bose-Einstein Condensation and Atom Laser--Proceedings of CCAST (World Laboratory) Workshop[C];1999年
相關(guān)博士學(xué)位論文 前10條
1 李德賀;關(guān)于廣義m-quasi-Einstein流形的研究[D];鄭州大學(xué);2017年
2 李朝紅;耦合Bose-Einstein凝聚體系與強(qiáng)激光場中原子分子體系的非線性現(xiàn)象[D];中國科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2003年
3 王輝;不變Einstein-Randers空間[D];南開大學(xué);2010年
4 張向東;關(guān)于Bose-Einstein粒子模型的量子Boltzmann方程[D];清華大學(xué);2011年
5 陳勝;非緊半單李群上的左不變偽Einstein度量[D];南開大學(xué);2012年
6 沈明;Einstein場方程的嚴(yán)格解[D];浙江大學(xué);2010年
7 何源;理論物理中若干前沿問題的研究—Bose-Einstein凝結(jié)的轉(zhuǎn)變溫度與關(guān)聯(lián)函數(shù)、各向異性電阻率測量理論、電聲超導(dǎo)模型的漸近嚴(yán)格精確解[D];復(fù)旦大學(xué);2009年
8 陳碧歡;基于需求和體系結(jié)構(gòu)的軟件系統(tǒng)自適應(yīng)方法[D];復(fù)旦大學(xué);2014年
9 王周峰;幾種光柵問題的自適應(yīng)DtN有限元方法[D];南京大學(xué);2015年
10 趙迎功;統(tǒng)計(jì)機(jī)器翻譯中領(lǐng)域自適應(yīng)問題研究[D];南京大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 馮悅;Bose-Einstein凝聚基態(tài)解的時(shí)空自適應(yīng)方法[D];浙江大學(xué);2017年
2 李新克;微擾法解Einstein場方程的研究[D];鄭州大學(xué);2007年
3 孔姍姍;第四類Hua結(jié)構(gòu)上的Einstein-K(?)hler度量[D];首都師范大學(xué);2007年
4 張文娟;第三類Cartan-Hartogs域的Einstein-K(?)hler度量[D];首都師范大學(xué);2004年
5 唐俊麗;一類Hartogs域上的Monge-Ampère方程及其完備的Einstein-K(?)hler度量[D];首都師范大學(xué);2009年
6 胡冰;關(guān)于Einstein黎曼流形的若干問題的研究[D];安徽師范大學(xué);2005年
7 魏峗峗;Bose-Einstein凝聚中一類非線性Schr(?)dinger方程[D];成都理工大學(xué);2007年
8 謝奕;基于Agent的開放系統(tǒng)自適應(yīng)框架[D];復(fù)旦大學(xué);2014年
9 陳星;帶齊次混合邊界特征值問題的一種基于多尺度離散的有限元自適應(yīng)算法[D];貴州師范大學(xué);2015年
10 余媛媛;基于移位反迭代的非協(xié)調(diào)Crouzeix-Raviart有限元自適應(yīng)方法求Laplace特征值問題[D];貴州師范大學(xué);2015年
,本文編號(hào):2173071
本文鏈接:http://sikaile.net/kejilunwen/yysx/2173071.html