基于輔助方程法求解分?jǐn)?shù)階非線(xiàn)性偏微分方程
[Abstract]:With the continuous application and development of computer technology and the further improvement of nonlinear scientific theory, the exact solution of nonlinear partial differential equations has become an important research work. In recent years, fractional nonlinear partial differential equations are more general than integer order. Many scholars are devoted to solving fractional nonlinear partial differential equations. At present, there are many methods to solve the exact solutions of fractional nonlinear partial differential equations, such as the homogeneous equilibrium method and Bcklund transform method and so on. In this paper, the application of B?cklund transform and nonlinear superposition formula in nonlinear partial differential equations is studied by using auxiliary equations on the basis of summarizing previous studies. The exact solutions of fractional nonlinear partial differential equations and various forms of infinite sequence solutions are obtained. In this paper, the fractional order nonlinear partial differential equations are studied and described. The contents are arranged as follows: in chapter one, the nonlinear science, the research and development of soliton theory are described. The research and development of fractional partial differential equation and the methods used in the study. In chapter 2, the PKP equation and Gardner equation of fractional partial differential equation in time space are studied by using Riccati as auxiliary equation. In chapter 3, the mBBM equations of fractional partial differential equations with Riccati equation and the first elliptic equation are studied, and the advantages and disadvantages of the two auxiliary equations are analyzed. The fourth chapter summarizes the whole paper and prospects the future development of the research topic.
【學(xué)位授予單位】:內(nèi)蒙古工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O175.29
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉希忠;俞軍;任博;楊建榮;;Bcklund transformations for the Burgers equation via localization of residual symmetries[J];Chinese Physics B;2014年11期
2 套格圖桑;伊麗娜;;一類(lèi)非線(xiàn)性耦合系統(tǒng)的復(fù)合型雙孤子新解[J];物理學(xué)報(bào);2014年16期
3 伊麗娜;套格圖桑;;帶強(qiáng)迫項(xiàng)變系數(shù)組合KdV方程的無(wú)窮序列復(fù)合型類(lèi)孤子新解[J];物理學(xué)報(bào);2014年03期
4 套格圖桑;;構(gòu)造非線(xiàn)性發(fā)展方程的無(wú)窮序列復(fù)合型類(lèi)孤子新解[J];物理學(xué)報(bào);2013年07期
5 套格圖桑;白玉梅;;第二類(lèi)變系數(shù)KdV方程的新類(lèi)型無(wú)窮序列精確解[J];物理學(xué)報(bào);2012年06期
6 套格圖桑;;sine-Gordon型方程的無(wú)窮序列新精確解[J];物理學(xué)報(bào);2011年07期
7 套格圖桑;;幾種輔助方程與非線(xiàn)性發(fā)展方程的無(wú)窮序列精確解[J];物理學(xué)報(bào);2011年05期
8 套格圖桑;;Riccati方程解的非線(xiàn)性疊加公式及其應(yīng)用[J];內(nèi)蒙古師范大學(xué)學(xué)報(bào)(自然科學(xué)漢文版);2011年03期
9 套格圖桑;斯仁道爾吉;;(n+1)維雙Sine-Gordon方程的新精確解[J];物理學(xué)報(bào);2010年08期
10 龐晶;邊春泉;朝魯;;A new auxiliary equation method for finding travelling wave solutions to KdV equation[J];Applied Mathematics and Mechanics(English Edition);2010年07期
,本文編號(hào):2172238
本文鏈接:http://sikaile.net/kejilunwen/yysx/2172238.html